
D
RA
FT

The Information Management Framework

Core Constructional Ontology

The Foundation for the Top-Level Ontology of the
Information Management Framework

Version 1.91

DRAFT

April 6, 2022

D
RA
FT

Contents

Executive summary 4

Introduction 4
Background . 4
Purpose . 5
Target Audience . 5

1 Context 5

2 Report overview 6

3 Project background 7

4 Constructional ontology 9

5 Core Constructional Ontology 10

6 Developing the Core Constructional Theory 11

7 Technical background 13

8 Core Constructional Theory: the formal language 14
8.1 Logical framework . 14
8.2 Non-logical vocabulary . 16
8.3 Conventions . 18

9 Core Constructional Theory: the axioms 19
9.1 Plural logic . 19
9.2 Stages . 21
9.3 Initial stage . 23
9.4 What exists at stages . 24
9.5 What is and is not constructible 26
9.6 Generic constructor . 27
9.7 Specialised constructors . 27
9.8 Classification . 28
9.9 Set constructor . 29
9.10 Sum constructor . 31
9.11 Left and right constructors . 34
9.12 Pair constructor . 36
9.13 Union constructor . 38
9.14 Traces . 39
9.15 Maximal extension of a stage . 42
9.16 Induction on the construction of objects 43

2

D
RA
FT

10 Derivation of set theory and mereology 43
10.1 Axioms of set theory . 43
10.2 Derivation of the axioms of set theory 46
10.3 Axioms of mereology . 48
10.4 Derivation of the axioms of mereology 49

11 Consistency of the Core Constructional
Theory 50

12 Conclusion 51

A Notions 53
A.1 List of key types and identity criteria 53
A.2 Constraints on inputs . 54

B Design choices 54

C Supporting the IMF’s selected TLOs 56

D CLAP background 58

E Constructing via CLAP profiles 61
E.1 Induction on the construction of Ks 62
E.2 From sufficient to necessary conditions for identity 63
E.3 An intended model of our construction 66
E.4 Equivalent formulations of the extremal clause 67
E.5 Further investigations . 71

F Proof of consistency of the Core Constructional Theory 71

G Axioms 77
G.1 Primary axioms . 77
G.2 Optional axioms . 84

H Future work 84
H.1 Short term . 85
H.2 Long term . 85

I Literature sources 85
I.1 Current situation with foundations 85
I.2 History of constructional ontology 86
I.3 Current work on constructional ontology 87
I.4 Other background work . 87

References 88

Acknowledgments 91

3

D
RA
FT

Executive summary

West forthcoming describes the seven-circles approach that is being used to
organise the development of the Information Management Framework. The
focus of this report is on the seventh circle: the Core Constructional Ontology.

An investigation (West 2020) recommended that the top-level ontology of the
Information Management Framework be underpinned by rigorously established
foundations. This report develops a constructional approach to ontology, the
Core Constructional Ontology, that provides these foundations. The report
describes the ontology and its motivation, and it provides its first formalisation,
thereby giving the Core Constructional Ontology a rigorous foundation. The
formalisation is proved to be consistent.

With these in place, we have established the feasibility of formalising the
foundation of the Information Management Framework’s top-level ontology and
provided a base for the building of the top-level ontology. Future work will
refine this formalisation.

Introduction

Background

In 2017, the National Infrastructure Commission published “Data for the Pub-
lic Good” (NIC 2017) which sets out a number of recommendations including
the development of a UK National Digital Twin supported by an Information
Management Framework of standards for sharing infrastructure data, under the
guidance of a Digital Framework Task Group set up by the Centre for Digital
Built Britain.

Much work has been done following this, but in particular:

• A vision of how society can benefit from a UK National Digital Twin is set
out in “Flourishing Systems - Re-envisioning infrastructure as a platform
for human flourishing” (Burgess et al. 2020).

• The direction for the technical standards, guidance and common resources
needed as part of the Information Management Framework is set out in
“The pathway towards an Information Management Framework - A ‘Com-
mons’ for Digital Built Britain” (Hetherington and West 2020).

In particular the latter identified the need for:

• A Foundation Data Model: a data model that provides the struc-
ture and meaning of data incorporating a top-level ontology based on
science and engineering principles, enabling it to be extended to support
the broadest possible scope consistently.

• A Reference Data Library: the classes and properties needed to enable
different organizations and sectors to describe things consistently.

4

D
RA
FT

• An Integration Architecture: the technical means, including open
source software, for sharing data securely with authorised users.

It also set out an outline approach and plan to develop the Information Man-
agement Framework.

Purpose

The purpose of this report is to give an understanding of the technicalities of
the foundation and formalisation underpinning the Information Management
Framework’s ontology.

Target Audience

This report is directed at a technical audience interested in understanding what
the foundation of the Information Management Framework’s ontology is and
how it is formalised. In particular, we expect the report to be of interest to
logicians and formal ontologists.

1 Context

The National Infrastructure Commission’s report “Data for the Public Good”
(NIC 2017) recommended the creation of a National Digital Twin (NDT) con-
necting digital twins across different sectors to give a system of systems view of
national infrastructure. As emphasised in reports such as Burgess et al. 2020,
this harnessing of the power of information and data will deliver better decisions
which lead to better outcomes for people and society.

The NDT is supported by an Information Management Framework (IMF)
that includes a Foundation Data Model (FDM) as a key component (Hether-
ington and West 2020). An investigation (West 2020) recommended that the
FDM seed be founded on a top-level ontology based on the four 4-dimensionalist
top-level ontologies (TLOs) that it had been determined best met the technical
requirements of the FDM, underpinned by rigorously established foundations.

Existing TLOs, including those selected as a starting point for the FDM,
are typically assembled from disconnected core components. In the case of the
selected TLOs, such components correspond to sets, parts (mereological sums),
and relations, which were not built and formalised in a single, unified way.
Previous work (De Cesare and Partridge 2016; Partridge, Cesare, et al. 2017;
Partridge, Mitchell, Loneragan, et al. 2019; Partridge, Mitchell, Loneragan, et
al. manuscript) has investigated how the selected TLOs could be unified based
on a constructional framework developed by the philosopher and logician Kit
Fine. Here we develop this novel approach, formally refactoring the disconnected
core components into a unified theory. Using this unified theory to underpin
the IMF’s TLO will significantly simplify and strengthen it, as well as providing
a firmer foundation for future development.

5

D
RA
FT

The National Digital Twin programme (NDTp) set up a project to build
this unified ontology, called the Core Constructional Ontology (CCO). This
stage of the project has developed a transitional framework that establishes the
feasibility of building the CCO. The framework is formalised by means of a
theory we call the Core Constructional Theory (CCT). Here we describes the
CCT and its associated CCO. Later stages of the project will further develop
and enhance this framework. Appendix E.5 gives some indication of what these
enhancements could be.

This novel theory develops the idea that all the objects in the CCO emerge
during construction. We start from an initial collection of objects—often called
givens—and a small number of constructors, and the entire ontology unfolds
from repeated constructions. So from the givens and constructors one knows, in
principle, all the objects in the ontology. Using the technical resources of plural
logic, the CCT formalises the arrangement of constructions in stages, where the
intended ontology arises after exhausting all the stages. This report documents
the CCT and provides a proof of its consistency.

2 Report overview

The report broadly divides into two parts. The first part is introductory and
is accessible to non-specialist readers. The second part is more technical, as it
describes the details of the formalisation. There are also various appendices.

The first, introductory part comprises five sections.

• Section 3 (Project background) provides the context for our project, its
connection to the IMF, and its relation to TLOs.

• Section 4 (Constructional ontology) introduces the idea of constructional
ontology.

• Section 5 (Core Constructional Ontology) describes the main features and
benefits of the CCO, our own constructional approach.

• Section 6 (Developing the Core Constructional Theory) develops the basic
framework for our formalisation of the CCO.

• Section 7 (Technical background) explains the level of specialist knowledge
presupposed by different sections of the report. It also provides references
for readers interested in acquiring the appropriate background for the
relevant sections.

The second, more technical part also comprises four sections.

• Section 8 (Core Constructional Theory: the formal language) introduces
the formal language in which the axioms of our theory will be formulated.

• Section 9 (Core Constructional Theory: the axioms) presents and explains
the axioms of the CCT.

6

D
RA
FT

• Section 10 (Derivation of set theory and mereology) shows how set theory
and mereology can be recovered from the CCT.

• Section 11 (Consistency of the Core Constructional
Theory) provides the context for our proof of consistency of the CCT.

The main body of the report refers to appendices that contain a variety of
supporting material. The key ones are:

• an explanation of the design choices we have made and their motivations
(Appendix B, Design choices);

• a mathematical investigation of the inductive features of construction (Ap-
pendix E, Constructing via CLAP profiles);

• a proof of consistency for the CCT (Appendix F, Proof of consistency of
the Core Constructional Theory);

• a description of future work (Appendix H, Future work).

In this report, we aim to use consistently technical terminology that either
follows standard mathematical and philosophical usage or reflects usage in the
survey Partridge, Mitchell, Cook, et al. 2020 and in relevant TLOs. For example,
we will consistently write about ‘elements’ of sets and ‘members’ of pluralities,
though these are used interchangeably in the literature.

3 Project background

The UK has initiated a programme to build a National Digital Twin: the Na-
tional Digital Twin programme (NIC 2017 and Bolton et al. 2018). Hethering-
ton and West 2020 recommends the adoption of an Information Management
Framework that includes a Foundation Data Model (FDM) as a key compo-
nent. West forthcoming describes the seven-circles approach that is being used
to organise the development of the Information Management Framework (see
Figure 1). The present report is part of the output of the Information Manage-
ment Framework. Its focus is on the last, seventh circle: the Core Constructional
Ontology.

It was proposed that the FDM be built on a TLO (Hetherington and West
2020). West 2020 determined that four selected 4-dimensionalist TLOs—the tar-
get TLOs—best met the technical requirements of the FDM. It recommended
that these target TLOs should be underpinned by rigorously established foun-
dations. The formalisation in this report provides the rigorous foundations for
these target TLOs.

The NDTp has carried out a comprehensive survey of available TLOs (Par-
tridge, Mitchell, Cook, et al. 2020), which also develops a framework for as-
sessing ontologies, including TLOs. One dimension of this assessment, called
“the vertical aspect”, concerns the formal structure of the “core of basic on-
tological hierarchical relations that are typically found in top-level ontologies;

7

D
RA
FT

Information Operations

Process Model based information
Requirements

Integration Architecture

Industry Data Models & Reference
Data

Foundation Data Model

Top Level Ontology

Core Constructional
Ontology

Figure 1: Information Management Framework: seven-circles approach

whole-part, type-instance and super-sub-type [...]. [I]n practice these hierar-
chies are a key part of the backbone of the ontological architecture” (Section
4.2.1). In the target TLOs, these are: whole-part, type-instance, tuple-place,
and super-sub-type.

As noted in this survey, TLOs tend to use a number of well-known formali-
sations for the core hierarchical relations in the vertical aspect. The whole-part
hierarchy is usually formalised using General Extensional Mereology (GEM),
also known as Classical Extensional Mereology (see Varzi 2019 and Partridge,
Mitchell, Cook, et al. 2020, Section 4.3.2). The target TLOs follow this ap-
proach. Some TLOs, including the target TLOs, adopt an extensional criterion
of identity for types, that is, sets (described in Partridge, Mitchell, Cook, et al.
2020, Section 4.3.6). In these TLOs, the type-instance hierarchy is often for-
malised using a version of set theory that includes urelements and is also used to
formalise the super-sub-type hierarchy. However, these TLOs adopt mereology
and set theory as separate formal theories, without an integrated development
of the two.

As Section 4.2.1 of the survey notes, the basic ontological hierarchical rela-
tions may be viewed as belonging to a single family and so should have similar
formalisations. We remarked above on previous work that included initial in-
vestigations of this suggestion for the target TLOs. These investigations started
to develop, but not yet formalise, the unified constructional approach sketched
by Fine (most prominently in Fine 1991 and Fine 1999). The investigations

8

D
RA
FT

also noted that, for the unified approach, three basic forms of construction are
required: one for sets, one for sums, and another for tuples, with an additional,
derived constructor for subsets.

Our project was tasked with building upon this initial investigation to pro-
duce a unified formalisation of the core hierarchies required for the target TLOs.
In particular, it was tasked with proving the consistency of the resulting for-
malisation.

4 Constructional ontology

In this section, we provide more context about the conception of ontology un-
derlying our project, namely, constructional ontology. On this conception of
ontology, one starts with some constructors and some givens. Then new ob-
jects emerge by construction, that is, from the application of constructors to
objects. So the resulting ontology can be characterised by three parameters:
the givens with which one starts, the constructors one employs, and the objects
that emerge from applications of the constructors. Among the latter, we allow
both constructed objects—the direct outputs of the construction—and traces of
the construction process itself. (More details are given in later sections)

Two features of constructional ontology are worth highlighting here. First,
it gives us a very clear picture of the overall contents of the ontology, including
a comprehensive view of the categories of objects. For example, if the ontology
includes only a set constructor, then all the objects in the ontology fall under
one of these three kinds: givens, sets, and traces of the construction process. We
start with the givens. Then sets and associated traces arise from repeated appli-
cations of the set constructor. In short, a constructor determines the category
of the objects it generates.

Second, identity criteria emerge from the constructional process: the iden-
tity of constructed objects is dictated by their constructors and the inputs of
the constructions. For examples, two sets (i.e. objects obtained from the set
constructor) are identical if and only if they are constructed from the same ob-
jects. In short, a constructor determines the identity of the objects it generates
as well as their category.

Constructional ontology has a long and venerable history (see Appendix I.2
for basic references). Of special importance for our project is Kurt Gödel’s
articulation of “the concept of set [...] according to which a set is anything
obtainable from the integers (or some other well-defined objects) by iterated
application of the operation ‘set of’ [...]” (Gödel 1964, p. 180). Here Gödel
is referring to a broadly constructional concept of set: sets are generated by
applications of the set constructor. More recent work on constructional ontology
includes that of Kit Fine, who has significant influence on this project. We build
on a number of his ideas for developing a unified constructional ontology.

9

D
RA
FT

5 Core Constructional Ontology

As we have mentioned, a constructional ontology can be characterised by three
parameters: the givens with which one starts, the constructors one employs,
and the constructed objects that emerge from applications of the constructors.
We begin to develop our approach, the CCO, by specifying these parameters.

The CCO assumes that the givens are the spatiotemporal atomic elements
of all possible worlds—sometimes called the pluriverse. In other words, these
atoms “cover” the pluriverse. The theory developed in this report, the CCT, has
a more flexible structure: the choices of givens is left open. More specifically,
the CCT only requires a minimal collection of givens: those that are necessary
to characterise the construction process (see Section 9.3). This simplifies the
task of formalisation, where such a minimal collection is used. But the theory
is consistent with stronger assumptions about the givens in the CCO and can
be adapted straightforwardly to other settings.

Our approach involves a single, generic pattern for constructors, which we
specialise into three key constructors: set, sum, and ordered pair. This speciali-
sation involves characterising the conditions under which these constructors can
be applied.

From these emerge the key categories of constructed objects: sets, sums,
and ordered pairs. (Hereafter we refer to ordered pairs simply as pairs, since
unordered pairs do not play any important role in this context.) Note that, as
new objects emerge, more possibilities for construction become available. For
example, once two sets a and b have been constructed, we can construct their
singletons or the set that has just these two objects as elements. We generate
the target ontology after we exhaust all possible constructions based on the
generic constructor.

In the remainder of this section, we focus on three features of our approach
and explain their benefits for our project: the approach is foundational, it has
a high degree of unification, and it is constructional in the sense introduced
above.

Our ontology has three characteristics that enable it to play a foundational
role. The first is its categorical completeness. That is, the ontology provides the
three basic categories of objects for the target TLOs: sets, sums, and tuples,
together with their associated hierarchical relations (type-instance, super-sub-
type, whole-part, and tuple-place). The second characteristic is object com-
pleteness. That is, the ontology generates all the objects needed by the target
TLOs. One might think of it as an “object factory” which supplies the objects
that might be needed in any domain. The third characteristic is that the ba-
sic categories provide objects in the ontology with appropriate identity criteria.
These are broadly extensional, based on the type of constructor and its input.
For example, two sets are identical if and only if they are constructed from the
same objects. Similarly, two sums are identical if and only if they have the same
parts.

Our approach is unified in the following ways. First, it gives a common
development of three key domains: sets, sums, and tuples. Ontologies that in-

10

D
RA
FT

volve sets and sum usually adopt set theory and mereology as separate theories,
without an integrated development. Here we provide a unified treatment of
sets, sums and pairs (hence tuples) as sui generis objects. So the three target
domains—sets, sums, and tuples—arise in similar ways through construction.
Second, there is a common basis for identity criteria, which are crucial for the
foundational role discussed above. Identity criteria for the objects of the ba-
sic types are extensional, with differences arising from the way the objects are
constructed. Third, the approach offers uniform ways of capturing key com-
monalities and differences among objects of the basic types. Such commonalities
and differences are captured by features of the underlying constructors.

In the previous section, we outlined the basic structure of a constructional
ontology. We now want to highlight four of its main benefits.

• Categorical differences are constructional differences: in constructional
approaches, different kinds of objects can be distinguished from one an-
other by the manner in which they are constructed. So categorical differ-
ences are explained by constructional differences.

• Dependency : some objects are built from others and hence “depend on”
them. This provides an explanation of ontological dependence and the
associated notion of grounding.

• Reduction: the ontology is built out of a relatively small set of initial
objects and thus achieves fundamental ontological parsimony in the sense
of Schaffer 2015.

• Consistency : construction can be a basis for consistency, avoiding para-
doxes such as those of Russell and Burali-Forti, although we need to take
care with the construction process. In our case, this is achieved by requir-
ing that the construction be “bottom-up” in the sense that the properties
of the constructed objects are determined by the properties of the inputs
to the construction.

Gödel stresses this last benefit in the article cited above. Speaking of the
constructional view of sets, he says:

[It] has never led to any antinomy whatsoever; that is, the perfectly
‘näıve’ and uncritical working with this concept of set has so far
proved completely self-consistent. (Gödel 1964, p. 180)

In this report, we show that our approach can be developed consistently. We
do so by providing a mathematical proof of consistency for the associated for-
malisation.

6 Developing the Core Constructional Theory

The project was tasked with developing the CCT, a formalisation of the CCO.
The first decision concerned what kind of constructional framework to adopt. It

11

D
RA
FT

was essential to demonstrate that this innovative approach would work, so we
decided to go with the established, and thus safe, option of adopting a stage-
theoretic framework (described below). This framework is well-developed for set
theory but needed to be extended to sums and tuples. We also recognised that
plurals have a natural role in representing the multiplicity of the input to our
constructors. (For example, it is far more natural to describe the set {a, b} as
constructed from the elements a and b than from any single entity representing
both a and b.) These things together provided us with the overall framework
for our formalisation.

Our formalisation takes its inspiration from the influential iterative concep-
tion of sets, which goes back to Gödel’s article cited earlier: “What is Cantor’s
Continuum Problem?” (1964). According to this conception, the sets are formed
in stages. We start, at stage 0, with some urelements. At stage 1, we form all
sets of urelements, which results in a larger domain. At stage 2, we form all
sets of objects from this larger domain. We continue into the infinite. At limit
stages, such as the first infinite stage ω, we collect the previously formed sets,
which are then used to form new sets at the next stage ω+ 1. The most famous
development of the iterative conception of sets is due to George Boolos (Boolos
1971), who develops a stage theory—an axiomatic theory that describes how
sets are successively formed at stages.

We generalise and extend Boolos’s stage theory in three different ways. First,
instead of considering just the construction (or “formation”) of sets, we adopt
Fine’s framework and offer a unified account of three different kinds of con-
struction that are central to the target TLOs: sets, mereological sums, and
pairs. This enables us to capture the core hierarchical relations of the target
TLOs mentioned earlier, namely, type-instance, super-sub-type, whole-part, and
tuple-place. We do not rely on a set-theoretic representation of pairs. Rather,
we treat pairs as a category of constructed objects, distinct from that of sets.
Our generic pattern for constructors relies on plural logic, which does not allow
for order. So we reconstruct paired objects by means of special constructed ob-
jects marked by positions—we call them “position objects”. For pairs, we need
two positions, so we introduce two categories of position objects. To emphasize
that there is no assumed order, we call these “left objects” and “right objects”
(we could have used a different naming convention, such as “red objects” and
“blue objects”). These objects are built by the corresponding constructors: the
left constructor and the right constructor. For example, suppose that we want
to construct the pair of a and b. We first construct from a and b two position
objects a′ and b′, obtained respectively by applying the left constructor to a
and the right constructor to b. Then we apply the pair constructor to a′ and b′,
which yields the desired pair.

Second, we do not require that all objects that can be constructed at a stage
are constructed at that stage. This enables us to realise separately construc-
tional possibilities that are independent of each other.

Third, the target ontologies involve traces, special objects that “log” the
structure of the construction process. These characterise how the objects are
constructed. For example, suppose a set is constructed at a certain stage. Then

12

D
RA
FT

this stage also includes a trace for each element of the set constructed. These
traces log the element’s view of the construction: the element itself, the type
of construction (set), and the output (the set constructed). For example, if the
set constructed is {a, b}, there will be two related traces, one recording that
a has been used as input in the construction of a set with output {a, b}, the
other recording that b has been similarly used. More details are provided in
Section 9.14.

We describe the process of construction in stage-theoretic terms. The process
consists of stages ordered by E, which may be seen as an accessibility relation
in the sense of relational semantics. We think of s E t quasi-temporally and
therefore often pronounce it “s precedes t” or “t is after s”. The accessibility
relation is reflexive. So the intended sense of “s precedes t” is “s precedes t or
s is equal to t”.

Every object in the target TLOs is introduced at some stage. We write
x@s for “x exists at s”. Some objects exist at an initial stage—these are the
givens. Once an object exists, it continues to exist at all later stages. However,
as we move from earlier to later stages, new objects might be constructed and
thus might begin to exist. In the investigation of the target TLOs, this process
is called ontogenesis as, intuitively, after all the stages all the objects in the
ontology exist.

In describing the CCT, we tend to use a dynamic language. This makes the
structure of construction easier to visualise, and it exposes relations of ontolog-
ical dependence among objects (see Section 5). However, the resulting domain
is not literally dynamic. It encompasses the objects that exist as a result of
the entire process. The same is true of Boolos’s stage theory for the iterative
conception of set. While his theory describes a seemingly dynamic process of
generation, the domain of the theory is not dynamic. It encompasses all sets
and results from the entire process.

All construction is effected by means of constructors. A constructor is ap-
plied to appropriate objects that exist at some stage so as to construct another
object, which may exist only at a later stage. In Appendix B, we provide details
about the design choices that inform our approach.

7 Technical background

We aim to make this report, as far as possible, accessible to non-specialist
readers, without additional readings. For readers interested in deepening their
understanding, appropriate references have been given in the preceding sections.
However, the development of the formalisation and the proof of consistency of
CCT in the succeeding sections have to rely on specialist and sometimes highly
technical notions from logic and mathematics. So these sections of the report
are more demanding and require a degree of specialist knowledge.

Section 8 presupposes a basic knowledge of first-order logic. The appropriate
background information can be found in logic textbooks such as Enderton 2001
and Hodges 1977. Building on this knowledge, readers should be able to follow

13

D
RA
FT

reasonably well the presentation of plural logic in this report. The presentation
is self-contained, though interested readers can find a more detailed discussion
of plural logic in Florio and Linnebo 2018 and Florio and Linnebo 2021.

The formulation of the CCT in Section 9 is based on, and hence presupposes,
the logical framework introduced in Section 8. While no additional knowledge
is strictly required to appreciate the formalisation, the context of some parts
of the theory (e.g. the axioms of Infinity and Replacement) will be clearer to
readers with basic knowledge of set theory (see, for example, Enderton 1977).

The most technical sections of the report—Section 11, Appendix E, and
Appendix F—use advanced notions from set theory and model theory. Expla-
nations of the required notions can be found in Kunen 1980 and Chang and
Keisler 1990.

To accommodate non-specialist readers, we add informal glosses to the for-
mal statements of the axioms. Moreover, where we make comments, we divide
these into more accessible notes and technical remarks. To further help non-
specialist readers, we supply in Appendix I an organised list of background
literature.

8 Core Constructional Theory: the formal lan-
guage

In this section, we introduce the formal language in which the axioms of the
CCT will be formulated (for the axioms, see Section 9). The language is given by
the logical framework (plural logic) and some non-logical vocabulary. The non-
logical vocabulary includes expressions for the key constructional operations and
for auxiliary vocabulary needed to express the way in which the constructional
operations are deployed through the stages.

8.1 Logical framework

As a logical framework for the CCT, we use plural logic, specifically what is
known in the philosophical literature as PFO+, which is short for plural first-
order logic plus plural predicates. This is the standard language for the for-
malisation of plural logic, though there are some differences in notation among
authors that use this system. Our exposition of the system relies on Florio and
Linnebo 2021.

The language of PFO+ extends the language of first-order logic with the
following classes of expressions:

A. Plural terms: plural variables (vv, xx, yy, . . ., and variously indexed vari-
ants thereof) and plural constants (aa, bb, . . ., and variants thereof),
roughly corresponding to the natural language pronoun ‘they’ and to plu-
ral proper names (e.g. ‘The Hebrides’), respectively.

14

D
RA
FT

B. Universal and existential quantifiers that bind plural variables (e.g. ∀xx,
∃yy, . . .). We may read ‘∀xx’ as ‘whenever there are some things xx, then
. . . ’, and we may read ‘∃yy’ as ‘there are some things yy such that. . . ’.

C. The binary predicate ≺ for plural membership, corresponding to the nat-
ural language ‘is one of’ or ‘is among’. Its first argument place is singular,
while the second is plural (e.g. ‘x ≺ xx’). So the predicate expresses a
relation between an object and some objects. The intended reading of
‘x ≺ xx’ is ‘x is one of xx’, which may be pronounced “x is one of the
xs”. For example, ‘s ≺ hh’ may be used to represent ‘Skye is one of the
Hebrides’.

D. Plural predicates, defined as predicates with one or more argument places
reserved for plural terms. An example is Construct(z, xx, y), which
represents that z is constructed from xx using the constructor type y. The
predicate’s arity can be represented by numerical superscripts, which may
be omitted for economy, as in the preceding example. The full predicate
is Construct3(z, xx, y).

The non-logical vocabulary of the language, which includes first-order and plural
predicates (class D above), is discussed in the next section.

We define a well-formed formula in the language of PFO+ starting with
atomic formulas. These are formed by combining predicates with the appropri-
ate number of terms. As noted earlier, we need to ensure that argument places
reserved for terms of a certain kind (singular or plural) are occupied by terms
of that kind. More complex formulas are obtained by means of sentential con-
nectives and variable binding using singular or plural quantifiers. (See Florio
and Linnebo 2021 for details.)

We should emphasize that plural predicates in this language are read collec-
tively. Collective readings of plural predicates contrast with distributive read-
ings. To appreciate the distinction, consider a natural language predicate such
as ‘lifted a box’. The sentence ‘Annie and Bonnie lifted a box’ can mean that
Annie and Bonnie lifted a box together (collective reading), or it can mean that
Annie and Bonnie lifted a box individually (distributive reading). So a predicate
in our formal language such as Construct(z, xx, y) has a collective reading: it
means that z is constructed collectively from xx using the constructor type y.

This choice of interpretation for the plural predicates does not make PFO+
any less expressive, since the effect of distributive predication can be obtained
by paraphrase. For example, suppose we want to say that xx are sets, which
has only a distributive reading, i.e. each of xx is a set. Then, using the singular
predicate IsSet(x), we can express that xx are sets by saying that everything
that is one of xx is a set:

∀x(x ≺ xx → IsSet(x))

To illustrate the use of PFO+, it might be helpful to provide some examples
of formulas together with informal glosses. For intuitiveness and simplicity, our

15

D
RA
FT

informal glosses will often render plural expressions in terms of “pluralities” and
their members.

• v ≺ vv
(v is one of vv, i.e. it is one of them.)

• AreSeven(aa)

(aa are seven.)

• IsBox(b) ∧ ∃xx(∀x(x ≺ xx ↔
IsTile(x) ∧ IsIn(x, b)) ∧ Weigh8kg(xx))

(The tiles in box b weigh 8 kg together. Literally, b is a box and
there are some things such that anything is one of them if and only
if it is a tile in b and, together, they weigh 8 kg.)

• ∃z∃xx∃yConstruct(z, xx, y)

(Some object is constructed from some things using some type of
constructor.)

• ∃zz∀z(z ≺ zz ↔ (z = a ∨ z = b))

(Consider two objects a and b, possibly identical. There is a
plurality that has a and b, and only a and b, as its members. If
a = b, then this is a “singleton” plurality.)

• ∀z∀xx∀y(Construct(z, xx, y)→ ∀ww(∀w(w ≺ xx↔ w ≺ ww)→
Construct(z, ww, y)))

(If an object of some type is constructed from a plurality xx, then
it is also constructed by any plurality ww that has exactly the same
members as xx.)

8.2 Non-logical vocabulary

We have designed the language of the CCT so that its basic non-logical vo-
cabulary can express the constructional operations in scope, the structure of
the stages, and the way in which operations and stages interact to produce the
target ontology. This vocabulary is given by constants, first-order predicates,
and plural predicates of kind D mentioned above.

The present version of the CCT includes a single, generic constructor, which
we express here as a three-place predicate rather than an operator. Given our
requirements for formalisation, this is the simpler choice: it makes working
in classical logic unproblematic, as we avoid the need to handle empty terms
and partial functions. Different types of constructed object can be obtained by
switching one of its parameters. The switch is effected using special constants,
one for each type of constructed objects.

16

D
RA
FT

Generic constructor

predicate intended reading

Construct(z, xx, y) z is an/the object constructed from xx using the
type y

The predicate has three argument places. The first is associated to the object
constructed, while the other two are associated to the inputs of the construction
(a plurality of objects) and an object representing the type of construction
effected.

To indicate the types of construction, we use six special constants.

Types

constant intended reading

cset set construction type

csum sum construction type

cleft left position construction type

cright right position construction type

cpair pair construction type

cunion union construction type

For example, we describe the construction of a set by filling the third argu-
ment place of Construct(z : xx, y) with the constant for the desired type of
construction: Construct(z : xx, cset).

Next, we have some predicates pertaining to stages and their structure.

Stages

predicate intended reading

Stage(x) x is a stage

E(s, t) s is before, or equal to, t

@(x, s) x exists at (stage) s

The process of construction involves the application of the generic construc-
tor to some objects and the specification of the type of construction to be ef-
fected. Since we require pluralities to be non-empty (see Section 9), we thereby

17

D
RA
FT

disallow empty inputs to any constructor. Moreover, one can refine this pro-
cess by placing constraints—in accordance with the target TLOs—upon what
objects can serve as inputs relative to particular types. In the case of the set
constructor, for example, all objects other than position objects can serve as
inputs and thus are (informally) “settable”. In the case of mereological sums,
the CCT restricts the process of construction to individuals, namely, objects
that are either givens or sums. Only individuals are “summable”. The notion
of “individual” is expressed by a primitive predicate.

Individuals

predicate intended reading

Individual(x) x is either a given or a sum

As mentioned above, the target ontology involves traces, namely, objects that
log the structure of the construction process. The components of this structure
are accessed by three predicates listed below. More details about these predi-
cates and their role is provided in Section 9.14.

Traces

predicate intended reading

HasOutput(w, z) w records a construction with output z

HasInput(w, x) w records a construction with x as one of the
inputs

HasType(w, y) w records a construction of type y

This completes our basic stock of primitive non-logical vocabulary. We will
make frequent use of definitions to introduce new notions. To facilitate the
automated translation of the formalisation into computer-readable format, we
treat these definitions as axioms rather than abbreviations. As a result, these
definitions introduce new primitive non-logical expressions relying on non-logical
expressions from the basic stock as well as prior definitions.

8.3 Conventions

To simplify the exposition of the CCT, we rely on a number of familiar conven-
tions. Let us highlight some key examples.

First, we adopt the following formatting conventions.

• When parentheses are omitted, ambiguities should be resolved by applying
the standard rules of precedence among logical connectives.

18

D
RA
FT

• Different styles of parentheses are used to make groupings of formulas
easier to recognize.

• A leading block of universal quantifiers is frequently omitted. So axioms
with free variables, i.e. variables not bound by a quantifier, are short for
their universal closure.

• To improve readability, we use infix notation for some predicates. For
example, we write ‘s E t’ rather than ‘E(s, t)’, and ‘x@t’ rather than
‘@(x, t).

Secondly, we adopt a convention related to restricted quantification.

• Quantification restricted to certain kinds of entities may be marked by
the use of particular variables. We use s, s′, s0, t, etc. to range over
stages. So ∀sϕ(s) is short for ∀s(Stage(s) → ϕ(s)). Similarly, we use
ss, ss′, tt for plural quantification over stages. So ∀ssϕ(ss) is short for
∀ss(∀x(x ≺ ss→ Stage(x))→ ϕ(ss)).

Finally, we use the following, less common formatting convention in order to
emphasize constructional links among argument places of relevant predicates.

• We use a colon rather than a comma to separate the argument place for
the constructed object from the rest of the arguments. For example, we
write Construct(z : xx, y) rather than Construct(z, xx, y) to indicate
that z is constructed from xx and y.

9 Core Constructional Theory: the axioms

Our theory has several parts, with different concerns. The axiomatisation aims
to be perspicuous, user-friendly, and modular rather than minimal. It is based
on the language introduced in the preceding section.

9.1 Plural logic

The formal system PFO+, which we introduced in Section 8.1, comes equipped
with logical axioms and rules of inference. The axioms and rules associated with
the logical vocabulary of ordinary first-order logic are the standard ones. For
example, one could rely on introduction and elimination rules for each logical
expression. The plural quantifiers are governed by axioms or rules analogous to
those governing the first-order quantifiers.

In addition, we have the following axioms or axiom schemes. First, every
plurality is non-empty:

(A1) ∀xx∃y y ≺ xx
(Every plurality has at least one member.)

Then, there is an axiom scheme of indiscernibility:

19

D
RA
FT

(A2) ∀xx∀yy(∀z(z ≺ xx ↔ z ≺ yy) → (ϕ(xx) ↔ ϕ(yy)))

(Coextensive pluralities satisfy the same formulas.)

Some remarks are in order. First, the formula ϕ may contain parameters. So
we have the universal closure of each instance of the displayed axiom scheme.
Second, as is customary, we write ϕ(xx) for the result of replacing all free
occurrences of some designated plural variable vv with ‘xx’ whenever ‘xx’ is
substitutable for vv in ϕ (see, for example, Enderton 1977, p. 113). Third,
(A2) is a plural analogue of Leibniz’s law of the indiscernibility of identicals,
and as such, the scheme needs to be restricted to formulas ϕ(xx) that don’t set
up intensional contexts. Since there is no requirement for intensional contexts
in the CCO, no such context will be introduced in the CCT. Thus, the axiom
scheme may be used unrestrictedly in the present setting.

Finally, there is the unrestricted axiom scheme of plural comprehension, an
intuitive principle that provides information about what pluralities there are.
For any formula ϕ(x) in which x is free but xx is not, we have an axiom stating
that if ϕ(x) is satisfied by at least one thing, then there are the things each of
which satisfies ϕ(x):

(A3) ∃xϕ(x)→ ∃xx∀x(x ≺ xx ↔ ϕ(x))

(If something is ϕ, then there are some things that are all and only the
ϕs. That is, if something is ϕ, then the ϕs exist.)

We refer to an axiomatization of plural logic based on the principles just de-
scribed as full plural logic. The fullness of the logic has to do with the fact that
plural comprehension applies to any formula ϕ(x)—provided, as stated, that x
but not xx occur free.

Two important relations in plural logic are introduced as definitions. One is
the many-many relation of plural inclusion (‘are among’), which is symbolized
as ‘4’:

(D1) xx 4 yy ↔ ∀z(z ≺ xx→ z ≺ yy)

(Some things xx are among yy when everything that is one of xx is one
of yy.)

Another important relation is plural identity, symbolized as ‘≈’. The relation
can be defined using ‘4’, the symbol introduced by the preceding definition:

(D2) xx ≈ yy ↔ (xx 4 yy ∧ yy 4 xx)

(Two pluralities xx and yy are identical if and only if xx are among yy
and yy are among xx, i.e. xx and yy have the same members.)

When showing how to derive the axioms of set theory from the CCT (Sec-
tion 10.2), we will mention another principle of plural logic, one that corresponds
to the Axiom of Choice in set theory. Informally, the plural principle states that

20

D
RA
FT

for every plurality pp representing a family of pairwise disjoint pluralities of ob-
jects, there is a choice plurality for pp. This is a plurality containing a unique
member for any plurality in the family represented by pp. (See Section 10.2 for
more details.) We do not adopt this plural principle as an official axiom of CCT.
Rather, we leave it as an option available in contexts where the set-theoretic
Axiom of Choice is needed.

9.2 Stages

The stages are linearly ordered by the accessibility relation E:

(A4) ∀s sE s

(E is reflexive.)

(A5) ∀s∀t(sE t ∧ tE s → s = t)

(E is antisymmetric.)

(A6) ∀s0∀s1∀s2(s0 E s1 ∧ s1 E s2 → s0 E s2)

(E is transitive.)

(A7) ∀s∀t(sE t ∨ tE s)

(E is connected.)

In addition, stages are well-founded by E. Let us define s C t (“s is strictly
before t”) as follows:

(D3) sC t↔ (sE t ∧ s 6= t)

Then, we have:

(A8) ∀ss∃s(s ≺ ss ∧ ¬∃t(t ≺ ss ∧ tC s))

(The stages are well-founded by E. That is, for any plurality ss of stages,
there is a member s that is first among ss with respect to the order E.)

Notice that the last axiom makes essential use of plural logic, asserting some-
thing of every plurality of stages. Moreover, this axiom enables us to do well-
founded induction on E. (Assume that a property holds at the initial stage and
that, whenever the property holds at every s such that sC t, then it also holds
at t. Then the property holds at every stage.) Using this form of induction, we
will be able to show, for example, that something exists at every stage.

The accessibility relation is also serial:

(A9) ∀s∃t sC t

(For every stage, there is a strictly later stage.)

We say that t is a successor stage of s if and only if s precedes t and there
is no stage strictly in between s and t, that is:

21

D
RA
FT

(D4) Succ(s, t)↔ sC t ∧ ¬∃u (sC u ∧ uC t)

Later we will introduce a related abbreviation, a predicate ‘Max(s, t)’ repre-
senting that t is a maximal extension of s, that is, that t contains the result of
carrying out every construction that is possible at s (Section 9.15).

Remark. Axiom (A9) and the well-foundedness of E entail that every stage
has a successor stage.

Remark. We will eventually see that the seriality of E can be proved from the
other axioms of our theory (see Section 9.9). We keep the axiom of seriality,
however, as we will sometimes be interested in working with less than the full
theory.

There is an infinite stage:

(A10) ∃t(∃s sC t ∧ ∀s(sC t→ ∃u(sC u ∧ uC t)))

(There is a stage that is after some stage and is not immediately after
any other stage.)

Note. To see how this axiom secures an infinite stage, consider the finite stages
0, 1, 2, ... and the first infinite stage ω, which comes after all the finite stages. To
say that a stage t is not immediately after any other stage means that, if there
is a stage s before t, then there is a stage between s and t. Both 0 and ω are not
immediately after any other stage. (In the case of 0, this condition is vacuously
satisfied). However, unlike 0, ω is after some stage. So we can characterise ω as
the first stage that is after some stage but is not immediately after any other
stage.

Remark. We can now prove that there is an initial stage. Axiom (A10) entails
that there is a stage. Thus the plurality of stages exists and, given (A8), is
well-founded. So there is a first stage.

Let us say that some things exist at a stage if and only if each of them exists
at that stage. So we define ‘xx@@s’ (“xx exist at s”) as follows:

(D5) xx@@s ↔ ∀x(x ≺ xx→ x@s)

We also assume a stage-theoretic version of the axiom scheme of Replace-
ment. This is a powerful principle, which provides information about how many
stages there are. Specifically, the principle says there are so many stages that
the objects available at any one of them do not suffice to reach arbitrarily high
in the hierarchy of stages. That is, for any stage s, any objects xx at s, and
any formula ψ(x, y) that represents a function from xx to objects throughout
the hierarchy, there is a stage at which we find all the values that this function
takes for arguments among xx.

22

D
RA
FT

(A11)

xx@@s ∧ ∀x(x ≺ xx→ ∃y(¬Stage(y) ∧ ∀z(ψ(x, z)↔ y = z))) →
∃t∀x(x ≺ xx→ ∀y(ψ(x, y)→ y@t))

(Suppose that xx exist at s and that ψ(x, y) represents a function
mapping objects among xx to objects other than stages. Then there is a
stage t such that what exists at t includes the image under ψ of every
member of xx.)

This axiom is included primarily for the sake of re-construing set theory; it is not
essential to our approach. Notice, though, that our Replacement axiom is not
about sets but about stages and the many objects that exist at various stages.
Indeed, Replacement is the first of our axioms that ties the existence of stages
to the existence of objects that exist at stages, i.e. it is the first “interactive”
axiom.

9.3 Initial stage

An initial stage is one that is not preceded by any other stage. Let us define
‘Init(s)’ to mean that s is initial:

(D6) Init(s)↔ ¬∃t tC s

Remark. It follows from the connectedness of E that s is initial if and only if
it is before every other stage, i.e. ∀t sE t. This also means that there is at most
one initial stage. In a different context, the current definition of initial stage
would permit several alternative initial stages.

We define an object to be a given if and only if it exists at some initial stage:

(D7) Given(x)↔ ∃s(Init(s) ∧ x@s)

Then we assume the existence of some given:

(A12) ∃x Given(x)

(There is some given.)

In our setting, we need objects that code information about types of con-
struction. So we assume the existence of such objects. For example, we intro-
duce an object cset that stands for the type set. We do the same for each type of
construction in scope: sum, left object, right object, pair, and union. We make
the pragmatic choice to treat these objects as givens and, in fact, as the only
givens. In the future, we might want to separate these objects from those that
more properly represent the intended constructional ontology. For this specific
implementation of the CCT, and to allow modularity, we have the following
strengthening of (A12):

23

D
RA
FT

(A13) Given(cset) ∧ Given(csum) ∧ Given(cleft) ∧ Given(cright) ∧
Given(cpair) ∧ Given(cunion)

(The givens include: cset, csum, cleft cright, cpair, cunion.)

These are six distinct givens:

(A14) cset 6= csum ∧ cset 6= cleft ∧ cset 6= cright ∧ cset 6= cpair ∧ cset 6=
cunion ∧ csum 6= cleft ∧ csum 6= cright ∧ csum 6= cpair ∧ csum 6=
cunion ∧ cleft 6= cright ∧ cleft 6= cpair ∧ cleft 6= cunion ∧ cright 6=
cpair ∧ cright 6= cunion ∧ cpair 6= cunion

It is convenient to have a separate predicate applying to these objects qua rep-
resentations of types of construction:

(D8)
Type(y) ↔ (y = cset ∨ y = csum ∨ y = cleft ∨

y = cright ∨ y = cpair ∨ y = cunion)

In section 9.13, we will see that the type union has a derived status, while the
remaining types are basic.

Remark. Our approach can be extended to other constructors one may wish to
add. If new constructors are adopted, then the definition of Type(y) will have
to be modified accordingly. However, as we will see, other axioms that utilise
this predicate can remain unchanged, thus allowing a pleasing modularity.

9.4 What exists at stages

Some of the previous axioms already provide information about what exists at
stages. For example, stipulating the existence of some givens implies that they
exist at the initial stage. Moreover, the axiom scheme of Replacement informs
us that if some objects exist at a stage, their images under a functional relation
also exist at some stage—provided only that no image is a stage. It is worth
emphasising that while stages are part of the CCT, they are not part of the
CCO. We use the term ‘object’ in two corresponding ways. In a wide sense, it
stands for all entities in the domain of the CCT. In a narrow sense, it stands
for relevant entities in the CCO and thus excludes stages. (So far we have used
the term primarily in the narrow sense.) We now continue to explore principles
that connect stages and what exists.

First, we have an axiom that ties the objects in our ontology to stages,
with the exception of the stages themselves, which are not part of the intended
ontology and thus have a purely auxiliary role. (In future work, we will explore
formalisations that do rely on stages as primitive.)

(A15) ∀x(¬Stage(x)→ ∃s x@s)

(Everything that isn’t a stage exists at some stage.)

24

D
RA
FT

Note. We will be able to prove the other direction of the conditional in (A15)
relying also on axioms introduced in later sections. So, in the CCT, something
is not a stage if and only if it exists at some stage.

We identify stages extensionally. That is, stages with identical domains are
identical:

(A16) ∀x(x@s↔ x@t)→ s = t

(Stages with identical domains are identical.)

Moreover, stages are “cumulative”:

(A10) sE t ∧ x@s→ x@t

(When one stage precedes another, then everything that exists at the
former also exists at the latter.)

Define a stage t to be the least upper bound (LUB) of some stages ss in the
usual way:

(D9) LUB(t, ss)↔ ∀s(s ≺ ss→ sE t) ∧ ∀t′(∀s(s ≺ ss→ sE t′)→ tE t′)

(According to the definition, t is the least upper bound of ss if and only
if two conditions are met: (i) t is an upper bound of ss, i.e. t is after, or
equal to, any stage in ss; (ii) t is the least among the upper bounds of ss,
i.e. t is before, or equal to, any upper bound of ss.)

Next, we have an axiom characterising “collection” stages. No new object is in-
troduced at these stages; they merely collect objects existing at previous stages.
Collection stages are useful when, as in our case, the construction process is
extended into the transfinite and hence requires infinite stages. To see why,
consider the first infinite stage ω, which comes after all finite stages. We cannot
think of ω as introducing new objects constructed from those available at the
preceding stage. This is because there is no stage that immediately precedes ω:
any stage n prior to ω has a successor stage n + 1 that is also prior to ω. So
what happens at stage ω? We adopt the option of simply letting ω collect the
objects that exist at prior stages. The same applies to other infinite stages that
are limit, namely, neither an initial stage nor a successor one. The following
entails that limit stages are collection stages (and it provides trivial information
about successor stages):

(A17) LUB(t, ss)→ ∀x(x@t→ ∃s(s ≺ ss ∧ x@s))

(Suppose t is the least upper bound of some stages ss. Then everything
that exists at t exists at some of ss.)

Remark. The cumulativity of the stages entails the other direction, which
means this conditional can be strengthened to a biconditional.

We now want to define a predicate ConstrFrom(x, s) whose intuitive mean-
ing is that x is constructed from some objects that exist at stage s. The precise
definition is as follows:

25

D
RA
FT

(D10) ConstrFrom(x, s)↔ ∃xx∃y(xx@@s∧Type(y)∧Construct(x : xx, y))

Finally, we restrict what can exist at a successor stage. This axiom also uses
the notion of trace, which is characterised in Section 9.14.

(A18) Succ(s, t) ∧ x@t → x@s ∨ConstrFrom(x, s) ∨Trace(x)

(Everything that exists at a successor stage either existed at the
predecessor stage, or is constructed from something at that stage, or is a
trace.)

Subsequent axioms will ensure the existence of appropriate traces at each suc-
cessor stage. In particular, they will ensure that new traces emerging at a
successor stage correspond to constructions effected at that stage.

9.5 What is and is not constructible

We impose various constraints on which objects can serve as inputs to different
types of construction. These constraints do not appear in the framework of
Fine 2010. They are added here to reflect the constraints in the target TLOs
and could easily be lifted in connection with the pursuit of other goals. In
this section, we provide an informal characterisation of the constraints. Formal
renderings of them will be developed in the later sections, where each type of
construction is axiomatised.

Let us recapitulate the overall structure of our ontology. We have five basic
types of objects that can be constructed: set, sum, two types of position objects
(left object and right object), and pair. One additional type of objects is derived:
union. The construction process proceeds in stages, beginning with some givens.
It yields objects of basic and derived types as well as traces storing information
about the constructions effected.

The construction of sets is the least constrained operation. Sets, sums, pairs,
givens, and traces can all serve as inputs to constructions of sets or, as we may
put it, are “settable”. Moreover, any plurality mixing objects of settable types
is itself settable. By contrast, the construction of sums is the most constrained
operation. Only individuals can serve as inputs, where an individual is defined
as follows:

(D11) Individual(x)↔ (Given(x) ∨ ∃xx Construct(x : xx, csum))

(Any object is an individual if and only if it is either a given or a sum.)

Remark. The axioms of the CCT entail that sets, position objects, and pairs
are not individuals. More generally, any two objects constructed from distinct
types other than union are distinct. Unions are sets. (See Section 9.8.)

Position objects resemble sets in the following respect: the objects that
can be used as inputs for their construction are exactly sets, individuals (i.e.
givens and sums), pairs, and traces. So position objects are not themselves
“positionable”. There is a difference, however. The input to the construction

26

D
RA
FT

of a position object must be a “singleton plurality”, namely, a plurality with
only one member. So any set, sum, pair, or trace can be the single member of
a plurality eligible for the construction of a left or right object.

Pairs can be constructed from position objects and only from them. But
the configuration of the input plurality must respect two conditions: (i) the
plurality contains exactly two members; (ii) one member is a left object while
the other member is a right object.

To sum up, the constraints vary according to the type of construction. The
difference might concern the type of objects in the input plurality or the size of
that input.

9.6 Generic constructor

The generic constructor is functional in the following sense:

(A19)
Construct(z1 : xx1, y1) ∧ Construct(z2 : xx2, y2) ∧

y1 = y2 ∧ xx1 ≈ xx2 → z1 = z2

(Any two objects of the same type, constructed from the same
pluralities, are the same.)

We also require that the third argument place be a type.

(A20) Construct(z : xx, y) → Type(y)

(If an object z is constructed from xx using y, then y is a type.)

9.7 Specialised constructors

We need axioms that characterise the behaviour of the four basic types of con-
struction and fix the identity criteria of their outputs. This is done in the next
four sections, which cover respectively sets, sums, position objects, and pairs.

For ease of exposition, it is useful to define operations that represent the
construction of objects of each type.

(D12) Set(x : xx)↔ Construct(x : xx, cset)

(D13) Sum(x : xx)↔ Construct(x : xx, csum)

(D14) Left(x : xx)↔ Construct(x : xx, cleft)

(D15) Right(x : xx)↔ Construct(x : xx, cright)

(D16) Pair(x : xx)↔ Construct(x : xx, cpair)

(D17) Union(x : xx)↔ Construct(x : xx, cunion)

27

D
RA
FT

It is then convenient to speak as if we are dealing with different types of con-
structor. For example, we will refer to the “set constructor” and describe its
properties. However, it is important to keep in mind that the CCT is built
around a single, generic constructor that can be specialised to obtain different
types of objects. So the notion of “set constructor” is ultimately understood in
terms of applications of the generic constructor using the parameter cset.

We use the following definitions to capture the extension of each type of
constructed object.

(D18) IsSet(x)↔ ∃xxSet(x : xx)

(D19) IsSum(x)↔ ∃xxSum(x : xx)

(D20) IsLeft(x)↔ ∃xxLeft(x : xx)

(D21) IsRight(x)↔ ∃xxRight(x : xx)

(D22) IsPair(x)↔ ∃xxPair(x : xx)

(D23) IsUnion(x)↔ ∃xxUnion(x : xx)

We wish to highlight an important feature possessed by some but not all
types of constructed objects. Unlike sums, sets, positions objects, and pairs
are strictly dependent on their members: if two objects of the relevant type
are identical, they are constructed from the same plurality. In other words,
an object of the relevant type is constructed from at most one plurality. This
feature corresponds to the injectivity of the relevant type, which we express as
follows.

(D24)

Injective(y) ↔ Type(y) ∧
∀z1∀xx1∀z2∀xx2(Construct(z1 : xx1, y) ∧ Construct(z2 : xx2, y) →

(z1 = z2 → xx1 ≈ xx2))

9.8 Classification

We want to classify the objects in the domain of the CCT. Our target principles
are:

(i) everything is either an individual, a set, a left object, a right object, a
pair, a trace, or a stage;

(ii) nothing has more than one of the mentioned properties.

The first principle can be obtained from the preceding axioms. This can be
seen as follows. By the axioms concerning what exists at a stage, we have that
anything that is not a stage exists at some stage. The only things that exist at
stages are givens, constructed objects, and traces. Givens are individuals, and

28

D
RA
FT

a constructed object is a set, a sum (thus an individual), a position object, or
a pair. A union is a set and thus does not introduce an extra dimension in the
classification.

The second principle is assumed as an axiom.

(A21)

∀z1∀z2∀xx1∀xx2∀y1∀y2(Construct(z1 : xx1, y1) ∧Construct(z2 : xx2, y2)

∧ y1 6= y2 ∧ y1 6= cunion ∧ y2 6= cunion → z1 6= z2) ∧
∀z(∃xx∃yConstruct(z : xx, y)→ ¬Trace(z) ∧ ¬Stage(z)) ∧
∀z(Trace(z)→ ¬Stage(z))

(Nothing has more than one of the relevant properties. More explicitly,
any two objects constructed from distinct types other than union are
distinct; constructed objects are distinct from traces and stages; and
traces are distinct from stages.)

Note. The type of the union constructor must be excluded since unions are
sets. However, the characterisation of unions (Section 9.13) ensures that they
identified with sets.

9.9 Set constructor

We begin by defining the permissible inputs to the set constructor, as anticipated
in Section 9.5:

(D25)

Settable(x) ↔
(IsSet(x) ∨ Individual(x) ∨ IsPair(x) ∨ Trace(x))

We use the definition to constrain the application of the set constructor:

(A22) ∀xx∀x(Set(x : xx) → ∀z(z ≺ xx → Settable(z)))

(If some things construct a set, then each of them is settable.)

The next axioms specify the relation between sets, their members, and
stages. We require that every appropriate plurality existing at a stage is even-
tually used to construct a set:

(A23)
∀xx∀s(xx@@s ∧ ∀x(x ≺ xx → Settable(x)) →

∃xSet(x : xx))

(For every plurality xx of settable objects existing at s, the set of xx
exists.)

29

D
RA
FT

Analogous requirements will apply to other constructors. We also lay down that
sets strictly depend on their elements:

(A24) Injective(cset)

(The type set is injective. That is, a set is constructed from at most one
plurality.)

Remark. The axioms of the CCT entail that the elements of a set exist at an
earlier stage than the set itself:

∀x∀xx(x@t ∧ Set(x : xx)→ ∃s(sC t ∧ xx@@s))

We reason as follows. Suppose that a set x exists at a stage. Because limit stages
are collection stages, x must exist at the initial stage or at a successor stage. It
cannot exist at the initial stage, since the givens are not sets. So x must exist at
a successor stage. Let t be the least successor stage at which x exists. Since x
does not exist prior to t and it is not a a trace, (A18) yields that the elements of
x exist at an earlier stage than x. This reasoning is based on previous axioms,
including the fact that the basic kinds of objects (sets, individuals, position
objects, pairs, and traces) do not overlap, a fact sanctioned by the classification
axiom (A21).

In this setting, there is a natural definition of set-theoretic membership:

(D26) x ∈ y ↔ ∃yy(Set(y : yy) ∧ x ≺ yy)

That is, to be an element of a set is to be a member of the (unique) input
plurality from which the set is constructed.

Remark. Every set is constructed from some plurality and thus has the mem-
bers of that plurality as elements. Since pluralities are not empty, it follows
that there is no empty set in this setting. Moreover, the functionality of the
generic constructor and the injectivity of the set constructor yield an analogue
of the usual extensionality criterion for set: two sets are identical if and only if
they are constructed from the same pluarlity. In symbols:

Set(x : xx) ∧ Set(y : yy)→ (xx ≈ yy ↔ x = y)

Remark. In Appendix D, we present and discuss four key principles for the
identity of constructed entities (Fine 2010): Collapse (C), Leveling (L), Absorp-
tion (A), and Permutation (P). Here we simply note that the preceding axioms
enable us to derive the correct CLAP profile for sets, namely, �C�LAP.

Remark. Given the set constructor and the axioms governing it, it follows
that the stages are serial, that is, for every stage, there is a strictly later stage:
∀s∃t s C t. The argument exploits a version of Russell’s paradox. Consider a
stage s. Use plural comprehension to consider the plurality xx of all and only
those objects at s that are not elements of themselves. This plurality can be

30

D
RA
FT

used to construct a set y at a stage t, with s E t. We want to show that t is
strictly after s: sC t. Suppose not, i.e. that t = s. We now ask whether y ∈ y,
with ∈ defined by (D26). Since y has as its elements all and only the objects at
s that are not elements of themselves, and since y by assumption exists at s, it
follows that y is an element of itself if and only if it is not an element of itself.
Since this is a contradiction, we conclude that s 6= t and thus that s C t after
all, as desired.

In Section 10.1 we state the axioms of Zermelo-Fraenkel set theory with
the Axiom of Choice, modified to fit the present context. We then show how
to derive such axioms from those of the CCT (Section 10.2). To facilitate the
derivation, we adopt an alternative, set-theoretic version of the axiom that there
is an infinite stage (Section 9.2):

(A25)

∃xx∃s∃y(xx@@s ∧ Given(y) ∧ y ≺ xx ∧ ∀x(x ≺ xx →
∃u∃uu(Set(u : uu) ∧ ∀w(w ≺ uu ↔ w = x) ∧ u ≺ xx)))

(There are some xx such that xx exist at a stage, xx have a given as
member and, whenever x is a member of xx, its singleton {x} is also a
member of xx.)

Once this axiom is adopted, we could dispense with the previous assumption
that there is an infinite stage. For the plurality required to exist here can only
arise at a limit stage.

9.10 Sum constructor

The inputs of the sum constructor are constrained to include only individuals:

(D27) Summable(x) ↔ Individual(x)

We make the corresponding requirement:

(A26) ∀xx∀x(Sum(x : xx) → ∀z(z ≺ xx → Summable(z)))

(If some things construct a sum, then each of them is summable.)

Remark. It follows from our assumptions that all givens are summable.

As with sets and other types of constructed objects, we require that every
appropriate plurality existing at a stage is eventually used to construct a sum:

(A27) ∀z(z ≺ xx→ Summable(z) ∧ z@s)→ ∃xSum(x : xx)

(For every plurality xx of summable objects existing at a stage s, the
sum of xx exists.)

31

D
RA
FT

Note. In the case of sets, we have that the elements of any set exist at a stage
strictly before any stage at which the set itself exists. Does something analogous
hold of sums?

The answer is negative: sums are simply different from sets in this regard.
To see this, consider a given g and let gg be the plurality whose sole member
is g. Then, as we will see shortly, Sum(g : gg). This provides a counterexample
to the hypothesis that every sum is the sum of some objects that exist strictly
before the sum itself.

Next, we need to state a criterion of identity for sums. Before we do that,
however, we state two constraints on their individuation, which Fine (2010)
labels Collapse and Leveling (see Appendix D for more context). First, sums
satisfy Collapse:

(A28) Sum(x : xx) ∧ ∀u(u ≺ xx↔ u = y)→ x = y

(The sum constructed from the singleton plurality of x is x.)

Second, sums satisfy Leveling:

(A29)

Sum(x : xx) ∧ Sum(y : yy) ∧
∀z1(z1 ≺ xx → (z1 ≺ yy ∨ ∃zz(zz 4 yy ∧ Sum(z1 : zz)))) ∧
∀z2(z2 ≺ yy → (z2 ≺ xx ∨

∃zz(zz 4 yy ∧ z2 ≺ zz ∧ ∃z3(z3 ≺ xx ∧ Sum(z3 : zz))))) →
x = y

(Suppose x is a sum of xx and y is a sum of yy. If the following two
conditions are satisfied, then x is y:

1. every x among xx is either one of yy or is a sum of some zz among
yy;

2. every y among yy is either one of xx or is one of some members of
yy whose sum is among xx.

In other words, two pluralities, one obtained from the other by replacing
some pluralities of objects with their respective sums, yield the same
sum.)

Remark. Given the axioms of plural logic, the functionality of the generic
constructor, (A19), entails Absorption and Permutation for any type of con-
structor. Thus, (A19), (A28), and (A29) lay down the entire CLAP profile of
sums, namely, full CLAP (see Appendix D).

Axioms (A19), (A28), and (A29) provide sufficient conditions for two mere-
ological sums to be identical. But we do not yet have any necessary conditions.
Let us explore the possibility of adding an “extremal clause” to the effect that

32

D
RA
FT

no two sums are identical unless they are identified as a result of these three
axioms. The three axioms can then be regarded as a recursive definition of sum
identity. Our question, then, is how this extremal clause might be formulated.

We first observe that we can prove that every sum is a sum of givens. The
proof goes by induction on the construction of sum (see Section 9.16 for a
general version of induction on construction). Let us sketch the reasoning,
which relies essentially on the fact that givens and sums are individuals and
that only individuals are summable. First, by Collapse, every given is a sum of
givens. Second, assuming that each of some summable objects xx is a sum of
givens, it follows by Leveling that so too is the sum of xx. Thus, the promised
conclusion follows by induction on stages.

This observation means that, to provide a criterion of identity for sums, it
suffices to state a criterion for sums of givens. In fact, it turns out there is a
simple way to do so, that is, to adopt the the “hyperextensional” principle of
Goodman 1958:

(A30)

∀x1(x1 ≺ xx1 → Given(x1)) ∧ ∀x2(x2 ≺ xx2 → Given(x2)) ∧
Sum(z2 : xx1) ∧ Sum(z2 : xx2)→

(z1 = z2 → xx1 ≈ xx2)

(If two sums of givens are identical, those givens must also be identical.
That is, a sum can be constructed from givens xx1 and also from givens
xx2, then xx1 are the very same objects as xx2.)

This is pleasingly analogous to the strict dependence that holds for sets, cap-
tured by the injectivity of the set constructor. Since every sum is a sum of
givens, every sum is constructed from a unique plurality of givens. So we have
an extensional criterion of identity for sums: two sums are identical if and only if
they are constructed from the same givens. In other words, the sum constructor
is injective on pluralities of givens.

In Appendix E, we provide a proper formulation of the extremal clause as
an induction principle. We also prove that (A30) is equivalent to this induction
principle in the special case of mereological sums. The upshot is that, for present
purposes, (A30) can be used as a formulation of the desired extremal clause.

We adopt the following definition of a predicate ‘≤’, where the intended
meaning of ‘x ≤ y’ is that x is a (mereological) part of y:

(D28) x ≤ y ↔ ∃yy(Sum(y : yy) ∧ x ≺ yy)

So to be a part of an object is to a member of a plurality from which the
object can be built using the sum constructor. This definition is analogous to
the definition of set-theoretic membership (Section 9.9). The adequacy of both
definitions will be vindicated by the ability to recover in the CCT key axioms
of set theory and mereology (Section 10).

33

D
RA
FT

Remark. It follows from x ≤ y that both x and y are sums. This can be
seen as follows. If x ≤ y, by definition there are yy such that Sum(y : yy) and
x ≺ yy. Since Sum(y : yy), y is a sum. Since x ≺ yy and yy is an input to
the sum constructor, x is summable. Only individuals are summable, so x is an
individual, i.e. a given or a sum. This implies that x is a sum, since it follows
from Collapse that givens are sums.

Note that (A30) is a natural generalization of, and hence stronger than, the
claim that every given is a mereological atom (relative to the above definition
of parthood). Define an atom to be an individual whose only part is itself:

(D29) Atom(x) ↔ IsSum(x) ∧ ∀y(y ≤ x → y = x)

As we explain and prove in Appendix E, the claim that every given z is an atom
can be formalized as:

Given(z) ∧ ∀x(x ≺ xx→ Given(x)) ∧ Sum(z : xx)→
z ≺ xx ∧ ∀x(x ≺ xx→ x = z)

That is, if a given is the sum of some givens, then “it is those givens”, i.e. it
is the only member of those givens. Thus, where this principle says that every
given is a unique sum of givens, namely the sum of itself, (A30) says that every
mereological object, whether a given or not, is a unique sum of givens.

Note. Various generalizations will eventually be needed. First, we will want
to allow the givens to come equipped with a mereological structure. This will
involve exchanging (A30) for some other axiom(s). It will also involve changing
the definition of mereological sum. Second, we will want to add “decomposers”,
which construct new parts of already existing objects. The result is a broader
conception of what can exists at successor stages.

An important feature of the CCT is that it enables us to derive standard
mereological axioms. More precisely, we can prove that the sums, ordered by
≤, form an atomistic General Extensional Mereology (AGEM) whose atoms are
precisely the givens. Details can be found in later sections (10.3 and 10.4).

9.11 Left and right constructors

The left and right constructors, in combination with the pair constructors, build
pairs in a symmetrical way to other constructors. They do so without the
need for order. At present, pairs are built in two stages using these types
of constructor. We are currently working on replacing this approach with a
simpler, direct construction process that treats pairs as derived objects.

The left and right constructors prepare objects to become inputs for the pair
constructor. The general picture is the following. A pair has a left coordinate
and a right coordinate. In the CCT, inputs to constructors are pluralities, which
have unordered members. So the pair constructor needs some information to
select the member of the input plurality that will become the left coordinate and

34

D
RA
FT

the member that will become the right coordinate. We supply this information
by constructing two kind of sui generis position objects: left objects and right
objects.

The construction of left and right object is is constrained in two ways. The
first is the size of the input plurality:

(A31)
∀xx∀x((Left(x : xx) ∨ Right(x : xx)) →

∀y∀z(y ≺ xx ∧ z ≺ xx → y = z))

(Any input plurality to the left or right constructor has no more than
one member.)

Since pluralities are not empty, this axiom ensures that the left and right con-
structors apply only to singleton pluralities. As a result, the single member of
the singleton plurality used as input becomes a left or right object.

The second constraint concerns the sole member of the input plurality: it
must be “positionable”. We define this property as follows:

(D30)

Positionable(x) ↔
(IsSet(x) ∨ Individual(x) ∨ IsPair(x) ∨ Trace(x))

Note. It follows that position objects are not themselves positionable. This is
a manifestation of their supporting role: position objects mark prior objects of
interest as left or right so that they can be used, so marked, in the construction
of a pair. The position object themselves are not objects of interest for this
construction. As a result, the left and right constructors cannot be iterated.
For example, there is no “left left object”.

Once we have defined what counts as “positionable”, we sanction the second
requirement by means of an axiom.

(A32)
∀xx∀x((Left(x : xx) ∨ Right(x : xx)) →

∀z(z ≺ xx → Positionable(z)))

(If some things construct a left or right object, then each of them is
positionable.)

Every appropriate singleton plurality is eventually used to construct a left
object and a right object:

(A33)
∀xx(∀y∀z(y ≺ xx ∧ z ≺ xx → y = z) ∧
∀z(z ≺ xx→ Positionable(z))→

∃x1Left(x1 : xx) ∧ ∃x2Right(x2 : xx))

35

D
RA
FT

(If xx is singleton plurality whose member is positionable, then a left
object and a right object with input xx exist.)

Remark. As remarked in Section 9.9, one can reason from the axioms of our
theory to the conclusion that the elements of a set exist at an earlier stage
than the set itself. An analogous reasoning yields that the sole member of the
plurality from which a position object is constructed exists at an earlier stage
than the position object itself. Formally, we have:

∀x(x@t ∧ (Left(x : xx) ∨ Right(x : xx))→ ∃s(sC t ∧ xx@@s))

Like sets, position objects strictly depend on their input pluralities. So the
left and right constructors are injective:

(A34) Injective(cleft) ∧ Injective(cright)

(Position types are injective. That is, a position object, left or right, is
constructed from at most one plurality.)

In combination with the functionality of the generic constructor, this axiom
entails that position objects are extensional: two position objects of the same
type are identical if and only if they are constructed from the same plurality.

9.12 Pair constructor

Our current approach to pairs avoids an explicit order, relying on left object
and right objects to mark positions in a pair. We recover the paired objects
from the inputs that generated the position objects used to construct the pair.
For example, suppose we want to pair a and b in this order, choosing left and
right to represent the first and second coordinate respectively. Then we use the
singleton plurality of a to construct a left object a′, and we use the singleton
plurality of b to construct a right object b′. Finally, we build a pair from the
plurality of a′ and b′. We recover the first coordinate by considering the sole
member of the plurality that constructed the left object a′. This yields a, as
desired. We recover the second coordinate similarly.

This approach requires that the input plurality to the pair constructor have
exactly two members, a left object and a right object. We formalise the require-
ment using the following axiom:

(A35)
∀xx∀x(Pair(x : xx) →
∃y∃z(y ≺ xx ∧ IsLeft(y) ∧ z ≺ xx ∧ IsRight(z) ∧
∀w(w ≺ xx → (w = y ∨ y = z))))

(Any input plurality to the pair constructor has exactly two members: a
left object and a right object.)

36

D
RA
FT

Thus, “pairable” objects are left and right objects. As noted, however, not every
plurality of pairable objects can be an input to the pair constructor. Pairable
object objects must combine in the particular way specified by the above axiom:
exactly one left object and one right object.

There are additional axioms. Every appropriate plurality is eventually used
to construct a pair:

(A36)
IsLeft(x) ∧ IsRight(y)→

∃zz(∀z(z ≺ zz ↔ (z = x ∨ z = y)) ∧
∃zPair(z : zz))

(For every left object x and right object y, a pair with input x and y
exists.)

Remark. In analogy with the case of sets and position objects, we can prove
from the axioms of the CCT that the objects used to build a pair exist at earlier
stages than the pair itself. The claim is formalised as follows:

Pair(z : xx) ∧ z@t→ ∀x(x ≺ xx → ∃s(sC t ∧ x@s))

Moreover, like sets and position objects, pairs strictly depend on their input
pluralities. So their constructor is injective:

(A37) Injective(cpair)

(The type pair is injective. That is, a pair is constructed from at most
one plurality.)

As before, the functionality of the generic constructor and the injectivity of
the specific constructor entail extensionality. Here we have that two pairs are
identical if and only if they are constructed from the same plurality.

Note. In general, the present approach to pairs requires two stages to build
a pair. We start with some objects a and b. At a subsequent stage we turn
them into position objects. It follow from (A34) that these position objects are
distinct if a and b are distinct. The position objects are then used as inputs to the
pair constructor at a later stage. There is some analogy with the construction
of pairs as set-theoretical objects according to Kuratowski’s definition. We start
with a and b. We then build {a} and {a, b}. Finally, we build the desired set
{{a}, {a, b}}, which stands for the pair 〈a, b〉.

Note. How can our approach be extended from pairs to tuples of arbitrary
length? A natural option is to add a new constructor for each coordinate of the
desired tuples. This would allow us to construct position objects corresponding
to the relevant coordinates. In our setting, the effect of new constructors can
be obtained by specialising the generic constructor through parameters. For
these parameters, one could use, for example, set-theoretic renderings of the
natural numbers associated with the target coordinates. So the number one

37

D
RA
FT

(say {a} for some conventionally chosen object a) would be used as the type of
constructor for the first coordinate of a tuple, the number two ({{a}}) would
be used as the type of constructor for the second coordinate, and so on. Once
the appropriate position objects have been built, we obtain a tuple by applying
the tuple constructor to such objects. This idea can be extended to infinite
sequences simply by using a larger stock of parameters (e.g. a representation of
the ordinals).

An alternative option is to develop a general theory of sequences, perhaps
based on two constructors: one constructor for turning an object into the corre-
sponding sequence of length one and another for concatenating two sequences.
We leave this for future work.

9.13 Union constructor

Among the constructors countenanced by the CCT, the union constructor has
a special status. It is the only derived constructor, in the following sense. The
objects constructed by the union constructor are sets, which can also be con-
structed using the set constructor. By contrast, not all sets can be generated
by means of the union constructor alone. For examples, singleton sets of givens
cannot be so constructed. Singleton sets are effectively “givens” for the union
constructor. The upshot is that the union constructor could be dispensed with.
However, pragmatic concerns as well as faithfulness to the target TLOs recom-
mend that the union constructor be included alongside the other constructors.

A set z is the union of the sets xx if and only if every member of xx is a set
and something is an element of z just in case it is an element of some set in xx.
So the union of the sets xx is the set constructed from the plurality of elements
of members of xx. We capture the relation between xx and their members by
means of a definition:

(D31)

Unionise(xx, yy) ↔
∀y(y ≺ yy → IsSet(y)) ∧
∀x(x ≺ xx↔ ∃y(y ≺ yy ∧ ∃zz(x ≺ zz ∧ Set(y : zz))))

That is, Unionise(xx, yy) holds if and only if yy are some sets whose elements,
combined, are all and only xx.

This relation between pluralities is used in the following axiom, which de-
scribes the link between the union constructor and the set constructor:

(A38) Union(z : xx) ↔ ∃yy (Set(z : yy) ∧ Unionise(yy, xx))

(z is the union of xx if and only if z is the set of some yy that “unionise”
xx.)

A consequence of the axioms is that if Union(z : xx), then each member of xx
is a set. So “unionable” objects are sets.

38

D
RA
FT

Remark. Since unions are sets, their identity conditions are inherited from
those of sets and need not be specified separately. However, it may be useful
to describe an appropriate identity criterion that could be adopted in contexts
where the union constructor is not treated as derived:

Union(z1 : xx1) ∧Union(z2 : xx2)→
(∃yy(Unionise(yy, xx1) ∧Unionise(yy, xx2))↔ z1 = z2)

(The unions constructed from xx1 and xx2 are identical if and only if the
same things unionise both xx1 and xx2.)

Remark. We want to think of a union as dependent on the sets from which it
is constructed. Nevertheless, we do not add an axiom to that effect. Once we
identify unions with sets, a union exists at a stage if and only if the set to which
it is identical exists at that stage. This means that a union can exist before
some sets that could construct it exist. For example, if we have two givens a
and b, we could form the set {a, b} before forming the singletons {a} and {b}.
So the union of these singletons can exist before the singletons do.

Given our setup, however, we can let traces express the idea that a union
is generated after the sets that construct it. Consider the union z constructed
from the sets xx. We introduce traces of the construction of z from xx at the
first stage t such that z exists at t and xx exist at a stage prior to t. This
simulates that z has been constructed from xx at t. Returning to our example,
we record the construction of {a, b} as the union of {a} and {b} at the first stage
where {a, b} exists after {a} and {b} have been constructed.

9.14 Traces

The next set of axioms concerns traces. These axioms ensure that whenever
certain constructions are effected, there are objects that encode relevant infor-
mation about the construction process. The name ‘traces’ emphasizes that the
role of these objects is to log information about constructions. Let us consider
an example. Suppose the set z is constructed from xx, i.e. Set(z : xx). Then,
for each member x of the input plurality xx, there is a trace w that stores the
following information about the underlying construction process:

(i) the output (the object constructed);

(ii) the fact that x is one of the inputs;

(iii) the type (set);

Using our primitive predicates, the information about the example would be
formalised as follows:

(i) HasOutput(w, z)

(ii) HasInput(w, x)

39

D
RA
FT

(iii) HasType(w, cset)

Thus a trace can be seen as a reification of the constructional relation between
composite and component, i.e. between the output and each member of the
input to the construction. Suppose that we use the plurality of a and b, two
distinct objects, to build the set z. Then two traces w1 and w2 emerge from this
construction. Both traces have output z and type cset. However, while w1 has
input a, w2 has input b. In general, the information that z is a set constructed
from some objects xx can be obtained by consulting all the traces that have the
set z as an output.

We characterise the traces by specifying the behaviour of the primitive pred-
icates associated with them. First, we require that an object always carries the
threefold information just described or does not carry any information of this
kind:

(A39)
∀w((∃zHasOutput(w, z) ↔ ∃xHasInput(w, x)) ∧

(∃zHasOutput(w, z) ↔ ∃yHasType(w, y)))

(Any object has an output if and only if it has an input if and only if it
has a type.)

Thus we can define a trace simply as an object that carries information about
an output:

(D32) Trace(w) ↔ ∃zHasOutput(w, z)

We now lay out the identity conditions for traces:

(A40)

Trace(w1) ∧ Trace(w2) →
∀x1∀x2∀y1∀y2∀z1∀z2((HasOutput(w1, z1) ∧ HasOutput(w2, z2) ∧

HasInput(w1, x1) ∧ HasInput(w2, x2) ∧
HasType(w1, y1) ∧ HasType(w2, y2)) →

(z1 = z2 ∧ x1 = x2 ∧ y1 = y2 ↔ w1 = w2))

(Two traces are identical if and only if they have the same output, input,
and type.)

Remark. Together with (A39), these identity conditions entail that any trace
carries information about exactly one output, exactly one input, and exactly
one type.

The next step is to ensure that traces are introduced at the correct stages.
That is, when an object is constructed at a stage—or, as in the case of union, it
is treated as constructed at a stage—the appropriate traces are also introduced
at that stage.

40

D
RA
FT

(A41)

(Construct(z : xx, y) ∧ z@t ∧ ∃s(sC t ∧ xx@@s))→
∀x(x ≺ xx → ∃w

(
w@t ∧

HasOutput(w, z) ∧ HasInput(w, x) ∧ HasType(w, y)))

(Suppose z is constructed from xx with type y, z exists at t, and xx
exist at some stage before t. Then we also require at t the existence of
appropriate traces. That is, for every member x of xx, there is at t a
trace recording that the construction process has output z, input x, and
type y.)

Remark. The condition

∃s(sC t ∧ xx@@s)

in the antecedent of (A41) is redundant for sets, position objects, and pairs.
This is because, as remarked above, constructions of these types require the
members of the input plurality to exist at an earlier stage than the constructed
object. In the case of sums or unions, however, the condition is not redundant.

Some examples might help illustrate the effect of this condition. Let us
use ‘+’ to indicate the result of summing some objects. And let us indicate the
plurality of x1, ..., xn as [x1, ..., xn]. So, for example, Sum(a+b : [a, b]). Suppose
that the initial stage, stage 0, comprises three givens a, b, and c. Suppose further
that at stage 1 we have the following individuals: a, b, c, a + b, a + c, b + c,
and a + b + c. Consider the construction Sum(a + b + c : [a + b, c]). While
a+ b and c exist at stage 1, no traces of this construction is introduced at stage
1. This is because a + b does not exist at the previous stage. The traces of
Sum(a+ b+ c : [a+ b, c]) are introduced at stage 2, when the conditions laid out
in the antecedent of (A41) are met. By contrast, the traces of Sum(a + b + c :
[a, b, c]) exist at stage 1, since a + b + c exists at that stage and each member
of [a, b, c] exists at the previous stage. This distribution of traces expresses that
the construction Sum(a + b + c : [a + b, c]) takes place at stage 2, while the
construction Sum(a+ b+ c : [a, b, c]) takes place at stage 1.

Something similar applies in the case of unions. Suppose the only set con-
structed at stage 1 is {a, b, c}, whereas {a, b} and {c} are constructed at stage
2. While {a, b, c} is the union of {a, b} and {c}, it exists prior to them. In this
scenario, the traces of Union({a, b, c} : [{a, b}, {c}]) are introduced at stage 3,
namely, the first stage such that {a, b, c} exists at it and both {a, b} and {c} exist
prior to it. This expresses that the construction Union({a, b, c} : [{a, b}, {c}])
takes place at stage 3.

We have given sufficient conditions for the existence of traces, ensuring that
construction processes are accompanied by the appropriate traces. We now
want to give necessary conditions, ensuring that there are no more traces than
required. This is done by an axiom stating that the only traces existing at a
stage are those recording constructions (basic or derived) using objects from
previous stages:

41

D
RA
FT

(A42)

Trace(w) ∧ w@t→
∃z∃xx∃x∃y∃s(Construct(z : xx, y) ∧ z@t ∧ xx@@s ∧ sC t ∧
x ≺ xx ∧HasOutput(w, z) ∧HasInput(w, x) ∧ HasType(w, y))

(If a trace w exists at a stage t, then it must appropriately record some
type of construction of an object existing at t from an input existing at
some stage before t.)

Remark. Axiom (42) implies that there are six kinds of traces, corresponding
to the five basic constructors (set, sum, left, right, and pair) and to the derived
constructor of union.

9.15 Maximal extension of a stage

A stage t is a maximal extension of a stage s if and only if t contains every
object that is constructed from objects that exist at s. This is formalised by
the next definition:

(D33) Max(s, t) ↔ ∀x(ConstrFrom(x, s)→ x@t)

Remark. The axioms for traces ensure that the appropriate traces exist at
maximal stages.

We assume maximality in the following sense:

(A43) ∀s∃tMax(s, t)

(Every stage has a maximal extension.)

Given any stage, the axioms for the specific constructors ensure that the objects
existing at that stage are used for every applicable construction. For example,
axiom (A23) states that for every plurality xx of settable objects existing at a
stage, the set of xx is constructed. Maximality requires the objects constructed
from a given stage to exist together at some stage.

Remark. A maximal extension strictly succeeds the stage whose maximal ex-
tension it is: Max(s, t)→ sC t.

Note. The theory implies that no new sums are constructed after the first max-
imal extension of the initial stage. This is because, as observed in Section 9.10,
two sums are identical if and only if they are sums of the very same pluralities
of givens. So once every plurality of givens has been summed, every sum that
is constructed must be identical to one that has already been constructed.

Remark. Consider the statement that every successor stage is also a maximal
extension:

Succ(s, t)→Max(s, t) (*)

42

D
RA
FT

This statement requires, in effect, that all constructional possibilities admit-
ted by the theory be realised as soon as possible. Without the statement,
the construction process may be slowed down: some constructional possibilities
available at a stage maybe be realised before other constructional possibilities
also available at that stage. For example, one may start by constructing mere-
ological sums of givens before constructing sets of givens. Thus (*) provides a
switch that makes the construction process as fast as possible.

9.16 Induction on the construction of objects

The possibility of induction on the construction of objects is an appealing feature
of the constructional approach, a feature that might non be available in a non-
constructional setting. In Section 9.10, we used an induction on the construction
of sums to show that every sum is a sum of givens. As noted, this specific form
of induction relies essentially on the fact that givens and sums are individuals
and that only individuals are summable. So it has no obvious analogue in cases
of constructors that permit as inputs also objects built from other constructors.

However, we have the resources to prove from our axioms a general form of
induction on the construction of objects. Assume that

(i) every given is ϕ, and

(ii) if every input to any constructor is ϕ, then the constructed object and its
associated traces are ϕ.

Then everything that isn’t a stage is ϕ.
We prove this as follows. Assume, for reductio ad absurdum, that the as-

sumptions hold but there is a non-ϕ that isn’t a stage. By the well-foundedness
of the stages, there is a least stage, s, at which such an object x exists. By
the cumulativity of the stages, s cannot be a limit stage but must be a suc-
cessor. By (A18) and (A42), x must either be constructed from some objects
yy available at the preceding stage or be a trace associated to a construction
effected at s. If x is constructed from yy, then each of yy is ϕ, since s is the
least stage at which a non-ϕ exists. Then it follows from assumption (ii) that
x too is ϕ, contradicting our assumption that x is non-ϕ. If x is a trace, then
it emerges at s from a construction whose inputs are available at the preceding
stage. Then, again, it follows from assumption (ii) that x too is ϕ, contrary to
our assumption. We conclude that everything that isn’t a stage is ϕ. The proof
appeals to stages and their well-foundedness, which highlights a benefit of the
stage-theoretic framework.

10 Derivation of set theory and mereology

10.1 Axioms of set theory

This section presents key set-theoretic axioms that can be recovered within the
CCT. Our exposition follows Florio and Linnebo 2021, Section 4.7. Standard

43

D
RA
FT

set theory, Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC), is a
theory of pure sets, formulated in the language of first-order logic containing only
one non-logical predicate, ‘∈’ for membership. (All other set-theoretic notions
are defined in terms of this single predicate.) The CCT describes, additionally,
entities that are not sets. So the appropriate set-theoretic axioms in our context
make room for such entities. This can be done by suitable restrictions of the
quantifiers in the axioms of ZFC. The result is similar to what is often known
as ZFCU, namely, ZFC with urelements. The traditional role of urelements is
played here by the givens alone, not by all entities that aren’t sets. We recognise
various non-sets in addition to the givens. Indeed, some of these non-sets arise
arbitrarily high in the hierarchy of stages, which implies that they do not form
a set. By contrast, there is a set of all gives. This corresponds to the traditional
axiom that the urelements form a set.

Another important difference between our target set-theoretic axioms and
the axioms of ZFC concerns the empty set. ZFC requires the existence of an
empty set, which is unavailable in the CCT. So we must also modify the axioms
of ZFC to avoid any commitment to the empty set.

A third difference arises from the fact that not all objects in the CCT are
settable. For example, position objects cannot be used to form sets. So, in
formulating the target set-theoretic axioms, we must take care to respect this
fact.

Below we list the target axioms. We show in the next section how to derive
them from the axioms of the CCT. Recall that the we have provided a construc-
tional definition of ∈ in Section 9.9: x ∈ y if and only if y is a set constructed
from some plurality that has x as a member. This definition is operative in the
following axioms.

(Extensionality) IsSet(x) ∧ IsSet(y) → (∀u(u ∈ x↔ u ∈ y) → x = y)

(Coextensive sets are identical.)

(Pairing)
Settable(x) ∧ Settable(y) →

∃z(IsSet(z) ∧ ∀u(u ∈ z ↔ u = x ∨ u = y))

(Every two settable objects have a pair set.)

(Union)
IsSet(x) ∧ ∀y(y ∈ x → IsSet(y)) →

∃z(IsSet(z) ∧ ∀u(u ∈ z ↔ ∃w(u ∈ w ∧ w ∈ x))

(For every set x whose elements are sets, there is a set y whose elements
are precisely those objects that are elements of some element of x.)

(Powerset)

IsSet(x) → ∃y(IsSet(y) ∧
∀u(u ∈ y ↔ IsSet(u) ∧ ∀w(w ∈ u → w ∈ x))

44

D
RA
FT

(Every set has a powerset.)

(Infinity)
∃x∃y(Given(y) ∧ y ∈ x ∧ ∀z(z ∈ x →

∃u(∀w(w ∈ u ↔ w = z) ∧ u ∈ x)))

(There is an infinite set. More specifically, there is a set x with a given
as an element and such that, whenever z is an element of x, so too is its
singleton {z}.)

(Separation)

∃y(y ∈ x ∧ ϕ(y))→ ∃z∀u(u ∈ z ↔ u ∈ x ∧ ϕ(u))

(For any set x and any condition ϕ satisfied by at least one element of x,
there is a set of precisely those elements of x that satisfy ϕ.)

(Foundation)
IsSet(x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ y ∧ z ∈ x))

(Every set x has an element that is disjoint from x.)

(Replacement)

IsSet(x) ∧ ∀y∀z(ψ(y, z) → IsSettable(z) ∧ ∀u(ψ(y, u) → u = z)) ∧
∃y∃z(y ∈ x ∧ ψ(y, z)) →

∃w∀u(u ∈ w ↔ ∃y(y ∈ x ∧ ψ(y, w)))

(For every set x and functional condition ψ whose image includes only
settable objects, if some element of x bears ψ to some object, then there
is a set of precisely those objects that are borne ψ by some element of x.)

This axiom is based on a simple and intuitive idea. Consider any set. For each
of its elements, choose either to keep this element or to replace it with some
other settable object. Then the resulting collection is also a set.

(Choice)

IsSet(x) ∧ ∀y(y ∈ x → IsSet(y)) ∧
∀y∀z(y ∈ x ∧ z ∈ x ∧ y 6= z → ¬∃u(u ∈ y ∧ u ∈ z)) →
∃w(IsSet(w) ∧ ∀y(y ∈ x →
∃u1(u1 ∈ y ∧ u1 ∈ w ∧ ∀u2(u2 ∈ y ∧ u2 ∈ w → u2 = u1))))

(Every set x of non-empty disjoint sets has a choice set, that is, a set
containing precisely one element of each element of x.)

45

D
RA
FT

An example due to Russell might be useful to understand the Axiom of Choice.
Suppose you have infinitely many pairs of shoes. Then it is easy to define a set
containing precisely one member of each pair, namely, the set of left shoes. What
if you have infinitely many pairs of socks where the two members of each pair
are indistinguishable? Then we are unable to define a set containing precisely
one member of each pair. The Axiom of Choice tells us that such a set exists,
irrespective of our ability to define it.

10.2 Derivation of the axioms of set theory

In this section, we show how the axioms of set theory presented in the previous
section can be recovered from the CCT. We proceed in the same order.

Extensionality. We want to show that coextensive sets are identical. Consider
two coextensive sets x and y. Then x and y are constructed from the same
plurality of objects. Thus, by the functionality of the set constructor, we have
x = y, as desired.

Pairing. We want to show that every two settable objects have a pair set.
Consider two settable objects x and y. Since stages are cumulative, there is a
stage at which each of the two objects exists. By plural comprehension, we can
form the plurality of x and y, which exists at that stage. Thus, by (A23), there
is the set of x and y, which is our desired pair set.

Union. We want to show that for every set x whose elements are sets, there is
a set y whose elements are precisely those objects that are an element of some
element of x. Given a set x existing at t, we can find yy at some earlier stage
s from which x is constructed. For any set among yy, there are some objects
from which this set is constructed. These objects exist prior to s. Thus every
element of some member of yy also exists at s. By plural comprehension, the
plurality of such elements exists at s. Thus, by (A23), this plurality forms a
set. This is the desired union set.

Powerset. We want to show that every set has a powerset. Let x be a set whose
elements are yy. If x exists at stage, yy also exist at that stage. It follows from
(A23) that for every subplurality zz of yy, the set of zz exists. The maximality
axiom (A43) yields a stage t at which every set constructed from a subplurality
of yy exists. Consider the plurality ww of such sets. Since this plurality exists
at t, we can use (A23) to conclude that there is the set of ww, which is the
desired powerset.

Infinity. Recall that we adopted (A25), a set-theoretic version of the principle
that there is an infinite stage. The axiom states that there is a plurality existing
at a stage such that it has a given as a member and, whenever x is a member
of it, so too is the singleton of x. The set of this plurality exists by (A23), and
it is infinite, i.e. it satisfies the closure conditions just mentioned.

46

D
RA
FT

Separation. We want to show that for any set x and any condition ϕ satisfied
by at least one element of x, there is a set of precisely those elements of x that
satisfy ϕ. Given a set x existing at t, there are yy at an earlier stage s from
which x is constructed. By plural comprehension, there is a subplurality zz of
those members of yy satisfying ϕ. By applying the set constructor to zz, we
obtain the set of precisely those elements of x that satisfy ϕ.

Foundation. We want to show that every set x has an element that is disjoint
from x. Given a set x, consider its elements yy. By the well-foundedness of the
stages, there is a least stage s at which some element of x can be found. Let y
be any such element. If y is not a set, then y has no member and is therefore
disjoint from x. If y is a set, then every element of y exists prior to s and hence
prior to all elements of x, since these do not exist prior to s. It follows that no
element of y is an element of x. Thus y and x are disjoint, as desired.

Replacement. We want to show that for every set x and functional condition ψ
whose image includes only settable objects, if some element of x bears ψ to some
object, then there is a set of precisely those objects that are borne ψ by some
element of x. Let x be a set existing at s, and let ψ be a functional condition of
the kind just described. The elements of x also exist at s. Suppose at least one
of them bears ψ to some object. Since ψ-images are settable objects and hence
not stages, we can apply axiom (A11), a stage-theoretic version of Replacement,
to find a stage t at which every ψ-image of some element of x exists. By plural
comprehension, the plurality of such images exists. Since every member of this
plurality is settable and exists at t, it follows from (A23) that a corresponding
set exists. This is the set of precisely those objects that are borne ψ by some
element of x, as desired.

Choice. This axiom can be proved if we assume a corresponding choice principle
for pluralities. Some natural formulations of the principle are schematic. In
this context, we prefer the following formulation, which is expressed as a single
statement. Let pp be a plurality of pairs (say, ordinary Kuratowski pairs). Each
first coordinate x occurring in one of these pairs is associated with a unique
plurality of objects, namely, all the objects yy such that the pair 〈x, y〉 is one of
pp and its second coordinate y is one of yy. Thus, pp can be seen as representing
a family of pluralities of objects, all the pluralities yy such that yy is associated
in the way just described with some x occurring as a first coordinate in pp. We
can now state the plural choice principle. Suppose pp represents a family of
pairwise disjoint pluralities of objects. Then there is a plurality cc such that,
for every x that occurs as a first coordinate in pp, there is a unique y ≺ cc such
that 〈x, y〉 ≺ pp. (Then cc is known as a choice plurality for pp.) Now, this
plural choice principle obviously implies the set-theoretic Axiom of Choice. To
see this, let x be a set of non-empty disjoint sets. Suppose x exists at a stage s.
Let pp be the plurality of all and only pairs 〈u, v〉 such that u ∈ x and v ∈ u.
The choice principle for pluralities ensures that there is a choice plurality cc for
pp. Since every member of cc is an element of an element of x, cc must all exist

47

D
RA
FT

at s, if not before. Thus, (A23) yields a set c constructed from cc, which is
easily seen to be a choice set for x.

10.3 Axioms of mereology

This section provides an exposition of the axioms of atomistic general exten-
sional mereology (AGEM). In the next section, we show how to derive these
axioms from those of the CCT.

Several equivalent axiomatisations of GEM can be found in the literature.
The axioms adopted here are based on those proposed in Cotnoir and Varzi
2019 (see also Florio and Linnebo 2021, pp. 96–103). We could simply import
these axioms and ensure they have the appropriate scope by restricting all their
quantifiers to sums. As remarked in Section 9.10, it follows from x ≤ y that
both x and y are sums. This enables us to simplify some of the axioms by
dropping redundant quantificational restrictions.

First, the sums are a partial order with respect to ≤:

(Reflexivity) IsSum(x)→ x ≤ x
(≤, restricted to sums, is reflexive.)

(Antisymmetry) x ≤ y ∧ x ≤ y → x = y

(≤, restricted to sums, is antisymmetric.)

(Transitivity) x ≤ y ∧ y ≤ z → x ≤ z
(≤, restricted to sums, is transitive.)

Next there is an axiom scheme of unrestricted fusion. For every formula ϕ
where x but neither y nor z occur free, we have:

(Unrestricted Fusion)

∀x(ϕ(x)→ IsSum(x)) ∧ ∃xϕ(x)→
∃y(IsSum(y) ∧ ∀z(y ≤ z ↔ ∀x(ϕ(x)→ x ≤ z)))

(Suppose that every ϕ is a sum and there is at least one ϕ. Then there is
a sum y such that for every z, y ≤ z if and only if, for every x that is ϕ,
x ≤ z. This means that there is a least upper bound, with respect to ≤,
of the ϕs.)

The last axiom of GEM is a principle of complementation (called ‘Remainder’
in Cotnoir and Varzi 2019):

(Complementation)

IsSum(x) ∧ IsSum(y) ∧ ¬x ≤ y →
∃z(IsSum(z) ∧

∀w(w ≤ z ↔ (w ≤ x ∧ ¬∃u(IsSum(u) ∧ u ≤ w ∧ u ≤ y))))

48

D
RA
FT

(For any two sums x and y, if x is not part of y, there is a sum z whose
parts are all and only the parts of x that do not overlap y. Two sums
overlap if a sum is part of both. The sum z can be regarded as the
relative complement of y with respect to x.)

We obtain the target theory, AGEM, by adding an axiom of atomicity. Recall
the definition of atom from Section 9.10:

(D29) Atom(x) ↔ IsSum(x) ∧ ∀y(y ≤ x → y = x)

Then the axiom of atomicity states:

(Atomicity) IsSum(x)→ ∃y(Atom(y) ∧ y ≤ x)

(Every sum has an atomic sum as a part.)

This completes the presentation of the axioms of AGEM.

10.4 Derivation of the axioms of mereology

In this section, we show how to recover the mereological axioms presented in the
previous section. The result is that, in the CCT, the sums ordered by ≤ satisfy
the axioms of AGEM, where the atoms are precisely the givens. An important
role in the derivations of the axioms is played by the principle that two sums are
identical if and only if they are constructed from the same givens (Section 9.10).
We also rely on the following, useful fact linking parthood with inclusion among
pluralities of givens.

Fact. x ≤ y if and only if the givens whose sum is x are among the givens whose
sum is y.

Proof. We start with the right-to-left direction of the biconditional. Assume
that x and y are the sums of gg and hh, respectively, where gg 4 hh. Then by
Leveling, y is also the sum of the plurality zz obtained from hh by replacing
gg with their sum. But the sum of gg is x. So x is one of some objects (i.e.
zz) whose sum is y. This means that x ≤ y. We now show the left-to-right
direction. Assume that x ≤ y, that is, x is one of some objects yy whose sum is
y. Let g be one of the givens whose sum is x. Then, by Leveling, x is also the
sum of x and g. Let zz be the plurality obtained from yy by replacing x with x
and g. By Leveling again, the sum of zz is y. Since g is one zz, it follows that
g is one of the givens whose sum is y. Since g was chosen arbitrarily from the
givens whose sum is x, we conclude that the givens whose sum is x are among
the givens whose sum is y.

We now proceed to derive the axioms of AGEM.

Reflexivity. Write x as a sum of givens gg. Clearly, gg 4 gg, which by the Fact
establishes that x ≤ x.

49

D
RA
FT

Anti-symmetry. Assume that x ≤ y and y ≤ x. We want to show that x = y.
Suppose x and y are the sums of givens gg and hh, respectively. By the Fact,
we have that gg 4 hh and hh 4 gg, which entails that gg ≈ hh. It follows from
the functionality of the generic constructor that x = y.

Transitivity. Assume that x ≤ y and y ≤ z. We want to show that x ≤ z.
Suppose x, y, and z are the sums of givens gg, hh, and ii, respectively. By the
Fact, we have gg 4 hh and hh 4 ii. So gg 4 ii. This means that x ≤ z.

Unrestricted Fusion. Assume that every ϕ is a sum and there is at least one ϕ.
We want to how that there is a least upper bound, with respect to ≤, of the ϕs.
Since there is some ϕ, plural comprehension yields the givens that are part of
some ϕ. By (A27), their sum y exists. Clearly, y is an upper bound of the ϕs.
To show that y is the least upper bound, suppose z is another upper bound.
Since every x satisfying ϕ is part of z, we must also have, by the transitivity
of ≤ (established above), that every given that is part of some ϕ is part of z.
Thus, every given from which y is constructed is part of z and, by the Fact, also
one of the givens from which z is constructed. It now follows, again from the
Fact, that y ≤ z and thus also that y is the least upper bound, as desired.

Complementation. Consider two sums x and y such that x 6≤ y. We want to
show that there is a relative complement of y with respect to x, namely, a sum
whose parts are all and only the parts of x that do not overlap y. By the Fact,
x 6≤ y entails that some given from which x is constructed is not among the
givens from which y is constructed. We can form the corresponding plurality
of givens and, by (A27), construct the sum z of all and only the givens that
are part of x but not of y. It is routine to show that z satisfies the criterion
for being the relative complement of y with respect to x. To see this, consider
any sum w that is part of x but does not overlap y. By the Fact, this is so if
and only if w is a sum of givens drawn from among the givens whose sum is
z. Again by the Fact, the preceding condition is satisfied if and only if w ≤ z,
which proves our claim.

Atomicity. As already observed in Section 9.10, every sum is a sum of givens,
which are atomic. This establishes the claim.

11 Consistency of the Core Constructional
Theory

A key technical component of the project is showing the consistency of the CCT,
axiomatised in Section 9. As is often the case, this is done by constructing a
set-theoretic model in which every axiom of the theory is true. The actual
model construction and consistency proof can be found in Appendix F. Here we
provide a brief overview.

To construct a set-theoretic model, we obviously need to rely on some set

50

D
RA
FT

theory in the metalanguage. Suppose this set theory is X. We will then have
proved that “the CCT is consistent relative to X”, that is, if our set theory X
is consistent, then so is the CCT. This makes it important to let X be some
familiar set theory of whose consistency set theorists are highly confident. One
such theory is ZFC. Our options concerning the choice of the theory X are either
ZFC itself or some relatively minor variants.

• We can use a Morse-Kelley class theory (MK), which adds to ZFC a single
layer of classes on top of all of the sets.

• We can use ZFC + an extra axiom stating that there exists an “inaccessible
cardinal”. In the literature on strong axioms of infinity, this is considered
a very modest extension of ZFC. (It is, however, stronger than MK, but
has the advantage of talking only about sets, with no need to add a notion
of class.)

• We can use ZFC as our metatheory and prove the consistency of a slight
weakening of the CCT obtained by restricting the axiom of plural com-
prehension. Instead of stating that any condition ϕ(x) that has instances
can be used to define a plurality of all ϕs, we state that there is a plurality
of all ϕs at stage s, for any given stage s.

• We can drop the axiom of Replacement from the CCT and use ZFC to
prove the consistency of the resulting theory.

In short, the CCT can be proved to be consistent assuming some very modest
extensions of standard set theory ZFC, and even the need to consider extensions
can be avoided by weakening non-essential parts of the CCT. In Appendix F,
we pursue the first option, namely we show that the CCT is consistent relative
to MK.

12 Conclusion

This project set out to provide rigorously established foundations for the IMF’s
TLO by formalising the CCO. This constructional approach to ontology unifies
the core components of the target 4-dimensionalist TLOs, leading to a single,
common foundation for future development. Using this unified core to underpin
the IMF’s TLO will significantly simplify and strengthen it.

The approach is novel, involving subtle and complex technical issues. Hence,
in our initial work, we only aimed to show the feasibility of the approach and
provide a transitional solution as a good base for both current and future work.

The feasibility of a unified approach has been established by producing a
formalisation of the CCO and by giving a mathematical proof of its consis-
tency. The formal theory, the CCT, unifies the three key domains—sets, sums,
and pairs—using a stage theory. In this theory, objects emerge through the
application of different constructors to objects existing at the initial stage or
constructed at prior stages. This unification and its associated simplification

51

D
RA
FT

are apparent in the common development of the key domains, the common basis
for the identity criteria of the objects in them, and the uniformity through which
we capture other important commonalities and differences. We also demonstrate
the strength of the CCT by recovering the axioms of standard set theory and
mereology.

Future work within the NDTp and planned academic research will develop
further our constructional approach, resolving outstanding subtle and complex
technical issues. For example, we will explore the introduction of deconstruc-
tors to work along constructors, thus enabling the possibility of mereological
gunk. We may also explore alternative formalisations of the constructional ap-
proach, such as dynamic formalisations and formalisations that eliminate stages
in favour of their associated pluralities. In addition, the next phase of the
project will examine strategies for an automated proof of consistency, tackling
the issues raised by the presence of schemes in the CCT.

52

D
RA
FT

A Notions

A.1 List of key types and identity criteria

The table below provides an informal summary of the seven broad types of
objects in the CCT together with their identity criteria. There are six types
of objects obtained from the application of constructors: sets, individuals, left
objects, right objects, pairs, and unions. In addition, there are traces, which
emerge from the constructional process. As is clear from the description in
the table, all these types of objects satisfy extensional identity criteria, which
directly correspond to the identity criteria in the target TLOs (see Section C).

type construction identity criteria

sets
all sets are constructed by
the set constructor

two sets are identical iff they are
constructed from the same plu-
rality (equivalently, iff they have
the same elements)

individuals
individuals are either con-
structed by the sum con-
structor or are givens

two individuals are identical iff
they are constructed from the
same givens (equivalently, iff
they have the same parts)

left objects
all left objects are con-
structed by the left con-
structor

two left objects are identical iff
they are constructed from the
same plurality

right objects
all right objects are con-
structed by the right con-
structor

two right objects are identical
iff they are constructed from the
same plurality

pairs
all pairs are constructed
by the pair constructor

two pairs are identical iff they are
constructed from the same posi-
tion objects (i.e. from the same
plurality of left object and right
object)

unions
all unions are constructed
by the derivative union
constructor

two unions are identical iff they
are identical as sets (i.e. the sets
to which they are equal are iden-
tical)

traces
all constructions have as-
sociated traces

two traces are identical iff they
have the same type and record
the same construction output
and input

53

D
RA
FT

A.2 Constraints on inputs

Constructional processes are constrained in that not all kinds of pluralities can
serve as inputs to constructions. Moreover, different constructors may place dif-
ferent restrictions on their inputs. The following table displays these constraints
based on the broad types of members in the input plurality. For example, the
set constructor admits as inputs only pluralities whose members are sets, in-
dividuals, pairs, unions, or traces. It is worth emphasising that there is no
requirement that such pluralities be uniform: a plurality is admissible as long
as each of its members is of an admissible type. So one can form the set {a,w}
where a is an individual and w is a trace.

type settable summable positionable pairable unionable

sets 3 7 3 7 3

individuals 3 3 3 7 7

position 7 7 7 3 7

objects

pairs 3 7 3 7 7

unions 3 7 3 7 3

traces 3 7 3 7 7

There are further constraints. Only singleton pluralities can be inputs to the
construction of position objects. Moreover, the construction of a pair requires
an input plurality containing a left object, a right object, and nothing else.
As explained in Section 9.12, the paired objects are ultimately recovered from
the inputs that generated the position objects used to construct the pair. So,
while only position objects are pairable, the intended coordinates of pairs are,
in effect, the positionable objects: sets, individuals, pairs, unions, and traces.
Position objects function as mere intermediaries.

B Design choices

Given that we were working with a novel approach, we made it our first priority
to show that a workable theory was possible. Hence, one could regard our
first version of the CCT as a kind of minimum viable product (MVP). We
accepted that, as a reasonable cost for early proof of concept, this would involve
compromises leading to minor reductions in usability.

We needed to identify a safe approach, in particular with respect to the type
of formalisation to use. The choice boiled down to stage theory or procedural
postulationism (a theory outlined in Fine 2005). While the latter appears to be
more attuned to constructionalism, it would require the development of signifi-
cant logical machinery, which would have considerably delayed the production

54

D
RA
FT

of a first workable system. Accordingly, the safer option of stage theory, which
has a better understood semantics, was chosen. If further work should prove
it is feasible to develop a formal approach based upon procedural postulation,
this alternative could be adopted later. Proposed improvements, including the
choice of formalisation, are listed under future work in Appendix H.

As noted, our decision to develop an MVP led to minor reductions in us-
ability. We now describe the most relevant, grouped by the associated kind
of object. We plan to address these soon, implementing ideas we have been
developing in the course of the project.

Let us call the informal approach of Partridge, Cesare, et al. 2017, Par-
tridge, Mitchell, Loneragan, et al. 2019 and Partridge, Mitchell, Loneragan, et
al. manuscript the benchmark approach. For sets, the formalisation required no
compromise; in this respect, the CCT realises the benchmark approach. In other
respects, there is some divergence, mostly as a result of choosing to develop an
MVP.

The benchmark approach also adopts a mixture of composing and decompos-
ing constructors. Specifically, it adopts a decomposer to construct individuals.
The construction process starts with the pluriverse as a single given. All in-
dividuals are then obtained by applying a sum decomposer to the pluriverse.
In contrast, the CCT uses a single form of constructor (composers) across the
board, thus avoiding the complications of managing both composers and de-
composers. This meant we had to adopt a different approach to individuals,
one that relies on composers. We chose to start with mereological atoms as
givens (informally, all the mereological atoms in the pluriverse) and to use a
sum composer to construct the rest of the individuals. In effect, this amounted
to swapping a sum decomposer for a sum composer. The resulting ontology is
therefore as granular as the givens. It does not provide “access” to any parts
that such givens might have or to whole-part relationships between the givens.

To build tuples, the benchmark approach uses a tuple constructor, assuming
that this constructor can be applied to objects in a way that respects order and
repetition. For this initial version of the CCT, we adopted a simpler approach
that avoided the requirements for a formalisation of order and repetition. This
is a natural and familiar approach to n-tuples: it starts with primitive pairs
and opens up the possibility of coding n-tuples through nesting (see Remark in
Section 9.12).

Four general objects are included in the benchmark approach and the tar-
get TLOs: set type, set-member type, super-sub-set type, and whole-part type.
The decision has been made to incorporate them into the CCT as givens repre-
sented by special constants. As a result, these general objects can be inputs to
constructors.

Given a constructional ontology, one might consider subontologies obtained
from various possible selections of givens and constructors (Fine 1991). Inves-
tigating and comparing these subontologies might be useful. Partridge, Cesare,
et al. (2017) have found that that it helps expose and explain the metaphysical
structures of the candidate ontologies, and that it helps assess different archi-
tectural choices. The benchmark approach made use of “ontological sandboxes”

55

D
RA
FT

to allow the development and study of subontologies in isolation from the full
constructional ontology. There was no requirement to replicate this feature
in our MVP, hence no attempt was made to formalise it. However, the CCT
has distinctive features whose explanatory benefits resemble those of ontological
sandboxes. The CCT allows non-maximal stages, and it could be modified to
allow multiple initial stages, each with its own givens. This allows for varieties
of ontogeneses where constructors are exhausted in independent branches before
merging—mimicking the behaviour of ontological sandboxes. For example, one
could exhaust the sum constructor, constructing all individuals, before starting
to apply the other constructors.

One question that emerges clearly in the formalisation is how far the con-
struction process should go and, in particular, whether it should be extended
into the transfinite. There is a requirement for the transfinite in the target
TLOs, hence we have included it in the CCT.

C Supporting the IMF’s selected TLOs

The CCO, and so the CCT, is intended to be the foundation of the IMF’s TLO.
This is a key part of the planned process of developing an FDM seed from a set of
4-dimensionalist top-level ontologies that best meet its technical requirements
(West 2020). The table below shows how the CCO maps directly onto, and
thereby supports, these selected TLOs.

56

D
RA
FT

C
C

T
B

O
R

O
ID

E
A

S
IS

O
1
5
9
2
6

H
Q

D
M

“O
b

je
ct

”
O

b
je

ct
s

T
h

in
g

th
in

g
th

in
g

In
d

iv
id

u
al

E
le

m
en

ts
In

d
iv

id
u

al
p

o
ss

ib
le

in
d

iv
id

u
a
l

p
o
ss

ib
le

in
d

iv
id

u
a
l

Is
S

et
T

y
p

es
T

y
p

e
cl

a
ss

cl
a
ss

Is
P

ai
r

T
u

p
le

s
tu

p
le

re
la

ti
o
n

sh
ip

re
la

ti
o
n

sh
ip

T
ra

ce
w

h
ol

es
-p

ar
ts

w
h

ol
eP

ar
t

co
m

p
o
si

ti
o
n

o
f

in
d

iv
id

u
a
l

co
m

p
o
si

ti
o
n

o
f

in
d

iv
id

u
a
l

&
c s

u
m

T
ra

ce
ty

p
es

-i
n

st
an

ce
s

ty
p

eI
n

st
an

ce
cl

a
ss

ifi
ca

ti
o
n

cl
a
ss

ifi
ca

ti
o
n

&
c s

e
t

T
ra

ce
su

p
er

-s
u

b
-t

y
p

es
su

p
er

S
u

b
T

y
p

e
sp

ec
ia

li
za

ti
o
n

sp
ec

ia
li

za
ti

o
n

&
c u

n
io
n

“P
os

it
io

n
ob

je
ct

”
tu

p
le

-p
la

ce
s

tu
p

le
P

la
ce

s
en

d
en

d

Note that the CCO has a general Trace whose type can be recovered, whereas
the other TLOs have individual types for each trace.

57

D
RA
FT

D CLAP background

Four key principles characterising identity conditions for constructed entities
are singled out in Fine 2010, where they are expressed using constructors that
take as inputs variable-length sequences of objects (including null sequences).
Let Σ be a constructor of this kind. Then we have the following, independent
principles.

(Collapse) Σ(x) = x

(The application of Σ to x is x.)

(Leveling) Σ(...,Σ(x, y, ...), ...,Σ(u, v,), ...) = Σ(..., x, y, ..., u, v, ...)

(Consider two sequences, one obtained from the other by replacing some
subsequences with the results of applying Σ to those subsequences.
Applying Σ to one sequence yields the same object as applying Σ to the
other sequence.)

(Absorption) Σ(..., x, x, ..., y, y, ...) = Σ(..., x, ..., y, ...)

(Repetitions of an object in the input sequence of Σ are irrelevant to the
result of the construction.)

(Permutation) Σ(..., x, y, z, ...) = Σ(..., y, z, x, ...)

(Changing the order of the objects in the input sequence of Σ is
irrelevant to the result of the construction.)

Constructors and their outputs can be classified depending on which of these
principles they satisfied. We call CLAP profile (from the initials of the princi-
ples’ names) the particular combination of principles that characterise a given
constructor and its outputs. Here are some important examples (Fine 2010):

• the CLAP profile of the set constructor is�C�LAP, i.e. only Absorption and
Permutation are satisfied;

• the CLAP profile of the sum constructor is CLAP, i.e. all four principles
are satisfied;

• the CLAP profile of string concatenation is CL�A�P, i.e. only Collapse and
Leveling are satisfied;

• the CLAP profile of the sequence constructor is �C�L�A�P, i.e. none of the
four principles is satisfied.

Another important example is the derived constructor of set-theoretic union:

• the CLAP profile of set-theoretic union is CLAP, i.e. all four principles
are satisfied, as in the case of the sum constructor.

58

D
RA
FT

There are some differences between the framework of Fine’s analysis and
ours. Our approach relates to investigations of the target TLOs (Partridge,
Cesare, et al. 2017, Partridge, Mitchell, Loneragan, et al. 2019, and Partridge,
Mitchell, Loneragan, et al. manuscript) that sketched an informal foundation
for the TLOs based on the following constructors and givens:

• constructors: set constructor, sum decomposer, sequence constructor, and
the derived union constructor. (The sum decomposer is the inverse of the
sum constructor; in other words, the direction of construction is reversed,
which means that the decompose works from composites to components.)

• givens: a single object, the pluriverse (the fusion of all individuals in the
sense of Section 9.5).

These investigations also identified a need for traces. In their setting, the follow-
ing constraints emerged. The sum decomposer applies only to inputs that are
individuals. Moreover, there are no “null applications” of constructors, thus no
null set (that is, no empty set), null part, or null sequence—a constraint we im-
ported. In this first formalisation, there were a number of hurdles to overcome.
In the interest of getting a usable theory as quickly as possible, we made several
design choices (see Appendix B) that resulted in a different set of constructor
and givens:

• constructors: set constructor; sum constructor, replacing the use of the
sum decomposer noted above; left constructor and right constructor; pair
constructor, replacing the use of the sequence constructor noted above;
set-theoretic union as a derived constructor.

• givens: six special objects used to indicate the types of construction.

We explain the motivations of these choices in Appendix B.
Further differences with respect to Fine’s framework arise from our decision

to adopt plural logic as the logical framework for our approach (see Appendix B).
Our generic constructor takes a plurality as input, unlike the constructors in-
volved in the four principles above, which take variable-length sequences of
objects. So we need to interpret the four principles in our setting. We set out a
way of doing this below. The discussion highlights some issues surrounding the
formalisation of order and repetition, features to which pluralities are insensi-
tive. We should also note that the use of pluralities as inputs naturally tracks
the TLOs’ requirement to exclude null applications of constructors.

Since we work with a generic constructor, we can interpret the four principles
as properties of the parameter that specifies the type of construction. So we say
that a type, such as set, does or does not satisfy Collapse, Leveling, Absorption,
or Permutation. Let y be a type of construction. Then y satisfies the relevant
principle if and only if it satisfies the corresponding condition below.

(Collapse) Construct(z : xx, y) ∧ ∀x(x ≺ xx↔ x = u)→ z = u

(If the generic constructor is applied using y to the singleton plurality of
u, the outcome is u.)

59

D
RA
FT

(Leveling)

Construct(x1 : xx1, y) ∧ Construct(x2 : xx2, y) ∧
∀z1(z1 ≺ xx1 → (z1 ≺ xx2 ∨

∃zz(zz 4 xx2 ∧ Construct(z1 : zz, y)))) ∧
∀z2(z2 ≺ xx2 → (z2 ≺ xx1 ∨

∃zz(zz 4 xx2 ∧ z2 ≺ zz ∧
∃z3(z3 ≺ xx1 ∧ Construct(z3 : zz, y))))) →

x1 = x2

(Suppose x1 is a constructed from xx1 and x2 is constructed from xx2. If
the following two conditions are satisfied, then x1 is x2:

1. every x1 among xx1 is either one of xx2 or is constructed from some
zz among xx2;

2. every x2 among xx2 is either one of xx1 or is one of some members
of xx2 that construct an object among xx1.

In other words, two pluralities, one obtained from the other by replacing
some subpluralities with the objects they construct, yield the same
constructed object.)

(Absorption)

Construct(z1 : xx1, y) ∧ Construct(z2 : xx2, y) ∧ ∃u(u ≺ xx1 ∧
∀w(w ≺ xx2 ↔ w ≺ xx1 ∨ w = u)) →

z1 = z2

(Repetitions of an object in the input plurality make no difference to
outcome of the construction.)

(Permutation)

Construct(z1 : xx1, y) ∧ Construct(z2 : xx2, y) ∧ ∃uu∃u∃v(

∀x(x ≺ xx1 ↔ z ≺ uu ∨ x = u ∨ x = v) ∧
∀x(x ≺ xx2 ↔ x ≺ uu ∨ x = v ∨ x = u)) →

z1 = z2

(Changing the order of the objects in the input plurality of makes no
difference to the outcome of the construction.)

Remark. The principles of plural logic and the functionality of the generic
constructor guarantee that these formulations of Absorption and Permutation
holds for every type. So the CLAP profile of our constructors always includes
A and P.

60

D
RA
FT

The formulations of Absorption and Permutation in Fine 2010 cover cases
where two input sequences differ not by one but by multiple repetitions and
changes in position. At least in the case of Absorption, one might try to
strengthen the formulation of Absorption in our framework so that the pre-
sentations of the two plurality can differ by multiple (even infinitely many)
repetitions:

Construct(z1 : xx1, y) ∧ Construct(z2 : xx2, y) ∧ ∃uu(uu 4 xx1 ∧
∀w(w ≺ xx2 ↔ w ≺ xx1 ∨ w ≺ uu)) →

z1 = z2

However, the resulting principle is still guaranteed by plural logic and the func-
tionality of the generic constructor.

This is one of the areas where further research would be fruitful. In par-
ticular, it would be worthwhile to explore ways of adapting our framework, or
using different frameworks, so as to make available constructors exhibiting the
full range of CLAP profiles.

E Constructing via CLAP profiles

We would like an approach to constructed objects that is based entirely on their
CLAP profile, as laid out in Fine 2010. In this appendix, we will largely follow
the notation and terminology of this article rather than that of our exposition
above. We make this choice for two reasons. First, Fine’s notation affords
greater economy and perspicuity for the purposes of our investigation in this
appendix. Second, the modular nature of our approach ensures that this choice
is benign. This technical appendix offers a mathematical investigation of the
extremal clause in sense of Section 9.10. Its main aim is to justify our choice
of (A30) as a simple and convenient formulation of the extremal clause for
mereological sums.

We restrict our attention to cases where the principles of Absorption and
Permutation are accepted. In all these cases, the argument of the constructor
Σ can be taken to be just a plurality of objects. Which pluralities are eligible
as arguments? To avoid paradox, the set constructor cannot be applied to all
pluralities sanctioned by traditional plural logic. One option is to restrict the
application of this and perhaps other constructors only to appropriate plural-
ities. Another option is to use critical plural logic (in the sense of Florio and
Linnebo 2021) rather than traditional plural logic. A third option, which we
pursue in this report, is to develop the theory of construction in a stage-theoretic
setting. In this appendix, we remain neutral on which option is chosen.

Our theory of constructed objects relies on two distinct inductive character-
izations:

1. one induction concerns the construction of objects of kind K (Ks for
short):

61

D
RA
FT

(a) a sufficient condition for the existence of Ks (e.g. sum formation,
decomposition, etc.);

(b) a necessary condition for the existence of Ks, to the effect that all
Ks can be obtained by means of the aforementioned constructors.

2. Another induction concerns identity among Ks. This comprises:

(a) sufficient conditions for Ks to be identical, in the form of the laws of
identification expressing the CLAP profile of Ks;

(b) a necessary condition for Ks to be identical: their identity must
follow from the mentioned sufficient conditions, so we supplement
these sufficient conditions with an “extremal clause” to the effect
that “that’s it”, these are the only grounds for identifying Ks.

This is all very constructional: both Ks and identities among them are suc-
cessively constructed in accordance with certain principles. And all the Ks
that exist, as well as valid identities between them, can be derived from the
mentioned principles.

E.1 Induction on the construction of Ks

In the simplest case, which is our focus in this appendix, every K can be built
up by means of the relevant summation operator Σ and only Ks can be input
to this operator. We express this by means of the following induction principle.

Induction on Construction of Ks (IC(K))

Assume

(i) every given eligible to serve as input to Σ is ϕ

(ii) if each of xx is ϕ, then so is Σ(xx).

Then every K is ϕ.

Note that clause (i) involves the predicate being a given, which we adopt as
primitive. In the case of sets, the induction principle is just induction on ∈,
which is known to be equivalent to the axiom of Foundation.

Notice that in our stage-theoretic setting, it can be proved from the well-
foundedness of the stages that mereological sums satisfy this induction scheme.
Since our exposition here is independent of stage theory, we assume, rather than
derive, that the induction principle holds when the Ks are sums (Ss). When
K = S, the associated induction principle will be called IC(S).

Given that the CLAP profile of sums is the full CLAP, this assumption
allows us to prove something that is both interesting in its own right and useful
for our subsequent discussion. The result was anticipated in Section 9.10:

Lemma 1. Every S can be written as a sum of givens:

∀x(Sx→ ∃gg(x = Σ(gg)))

62

D
RA
FT

(Here, and in what follows, we let variables such as ‘gg’, ‘hh’, etc. be implicitly
restricted to givens.)

Proof. The proof proceeds by the induction principle IC(S).

(i) This property holds of every given, by Collapse.

(ii) Assume next that each member xi of xx has the property. Then each xi
can be written as Σ(ggi). It follows from Leibniz’s law that that Σ(xx) =
Σ(yy), where yy is the plurality obtained from xx by replacing each xi with
Σ(ggi). Finally, it also follows from Leveling that Σ(yy) = Σ(gg), where
gg is the plurality combining all ggi. So Leveling allows us to capture the
following, intuitive identities:

Σ(x1, . . . , xi, . . .) = Σ(Σ(gg1), . . . ,Σ(ggi), . . .) = Σ(gg1, . . . , ggi, . . .)

Thus, our conclusion follows by IC(S).

Remark. Eventually, we will want to allow other ways to construct mereolog-
ical objects, say, by decomposition. Then clause (ii) of IC(S) will no longer
be sufficient; additionally, we need to require that ϕ be inherited under each
of the new forms of construction that we adopt (see the induction principle in
Section 9.16). Call the induction principle thus revised IC(S)+. Notice also that
Lemma 1 turns essentially on IC(S); the modified principle IC(S)+ would not
suffice. So this lemma is not valid in the more general setting where mereologi-
cal objects can be obtained by constructors other than Σ. Thus, the induction
principle IC(S) and its consequence (Lemma 1) are specific to our present set-
ting where we have a single constructor Σ and it takes as inputs only givens
and objects constructed by Σ. However, the general idea of giving an inductive
characterization of all the constructed objects in terms of the relevant construc-
tors is fully reusable and extends readily to cases with multiple constructors:
we just adopt IC(S)+ rather than IC(S).

E.2 From sufficient to necessary conditions for identity

Consider some construction operator Σ. The operator has a CLAP profile. We
adopt, as sufficient conditions for identity, each of the laws C (Collapse), L
(Leveling), A (Absorption), and P (Permutation) associated with this profile.
For example, if C is part of the profile, we adopt the principle Σ(xx) = x, where
xx comprise just x. (As noted before, the laws A and P are implicit in our
choice of pluralities as arguments for the constructor.)

Having laid down sufficient conditions for identity, our next task is to for-
mulate necessary conditions for objects constructed by Σ to be identical. Our
aim is to formulate an extremal clause to the effect that “that’s it”, i.e. that all
valid identities can be obtained by plural logic and the sufficient conditions for
identity from the relevant CLAP profile.

63

D
RA
FT

To understand the nature of the task, it is useful to observe that different
choices of necessary conditions can be compatible with an adopted set of suffi-
cient conditions. A nice example concerns sets and cardinal numbers. Clearly,
the sufficient conditions associated with C and L fail for both types of object; in
this sense, sets and cardinal number have the same CLAP profile. Yet different
necessary conditions for identity are appropriate for the two types of object.
Two sets are identical only if they are constructed from the very same objects,
which corresponds to the following necessary condition:

Σ(xx) = Σ(yy)→ xx ≈ yy (1)

Cardinal numbers, by contrast, are subject to a far less demanding necessary
condition:

Σ(xx) = Σ(yy)→ xx ≡ yy (2)

where xx ≡ yy abbreviates a standard formalisation of the claim that xx and
yy are equinumerous.

Of course, the consequent of (1) entails that of (2): coextensive pluralities
are also equinumerous. This means that (2) too is valid for sets. The problem
with adopting this as our only necessary condition for the identity of sets is that
it leaves the door open to far too many identifications. It permits Σ(xx) and
Σ(yy) to be identified even if this identification isn’t obtained from any of the
sufficient conditions associated with sets.

Our aim, then, is to formulate a necessary condition for the identity of sums
that captures the idea that the only way that Σ(xx) and Σ(yy) could come to be
identified is via the sufficient conditions for identity associated with Σ’s CLAP
profile. In fact, we will consider two different ways to formulate the desired
extremal clause.

A general but impractical option is simply to add as extra axioms the nega-
tion of all closed identity statements whose truth is not required by the sufficient
conditions for identity. This amounts to saying that we regard an identity as
true only if it is required by the sufficient conditions. An advantage of this
approach is that it is uniform across all different summation operators Σ of the
form we consider, and far beyond. It thus explains what all the different nec-
essary conditions have in common, namely, that they provide extremal clauses
for the associated sufficient conditions.

In many particular cases, though, a far more practical option is available.
We can adopt a simpler formulation of the extremal clause and show that it is
equivalent to the formulation in terms of negated identity statements. In effect,
we give a more practical, finitary reaxiomatisation of the theory resulting from
the impractical approach.

The case of sets provides a clear illustration of the simpler approach to the
extremal clause. As noted in Section 9.9, the CLAP profile of sets is�C�LAP. So
there is a single sufficient condition for the identity of sets:

xx ≈ yy → Σ(xx) = Σ(yy) (3)

64

D
RA
FT

which follows from plural logic alone. The extremal clause associated with
this CLAP profile lays down that there is no way for Σ(xx) and Σ(yy) to be
identified other than through (3). The first option for the formulation of the
extremal clause is to adopt as extra axioms the negation of all closed identity
statements not required by (3). This amounts to expanding the relevant theory
∆ to the theory

∆ 6= = ∆ ∪ {t1 6= t2 : ∆ 0 t1 = t2}

The second, much simpler option is to expand ∆ by means of a single axiom,
namely, the following principle of extensionality:

Σ(xx) = Σ(yy)→ xx ≈ yy (Ext)

This is the converse of (3). So we have the expanded theory

∆+ = ∆ ∪ {(Ext)}

The choice of ∆+ can be justified by showing it equivalent, in the appropriate
setting, to ∆6=; that is, ∆+ is a reaxiomatisation of ∆ 6=.

The case of mereological sums is less straightforward but more interesting.
In addition to the logical principle (3), we here have the sufficient conditions
associated with C and L. So in this case, there isn’t a single sufficient condi-
tion whose converse we can adopt. We are looking for one or more necessary
conditions for identity which function as an extremal clause for the mentioned
sufficient conditions. We claimed in Section 9.10 that the following hyperexten-
sional principle (Goodman 1958) provides the desired extremal clause:

Σ(gg) = Σ(hh)→ gg ≈ hh (4)

That is, if one sum can be constructed from givens gg and also from givens
hh, then gg are the very same objects as hh. This is pleasingly similar to the
criterion of identity (Ext) for sets. Notice also that, combined with Lemma 1,
(4) entails that every object is the sum of a unique plurality of givens.

Another pleasing aspect of (4) is that it is a natural generalization of the
claim that every given is a mereological atom, with parthood defined as in (D28).
Then the claim that g is an atom can be formalized as:

∀hh(g = Σ(hh)→ g ≈ hh) (4−)

where the consequent is an ad hoc shorthand for ‘g ≺ hh∧∀h(h ≺ hh→ h = g)’.

Lemma 2. A given is a mereological atom iff it satisfies (4−).

Proof. Suppose a given g has a part x, i.e. x ≤ g. By definition of parthood,
there are yy such that g = Σ(yy) and x ≺ yy. By Lemma 1, there are givens hh
such that x = Σ(hh). Using Lemma 1 again and Leveling, we have the following
fact: x ≤ g iff there are givens ii and hh such that g = Σ(ii), hh 4 ii, and
x = Σ(hh). Using this fact, it straightforward to establish the lemma. Assume
that g is a mereological atom and g = Σ(hh). Then every member of hh must

65

D
RA
FT

be g, i.e. g ≈ hh. Conversely, assume that g satisfies (4−) and x ≤ g. It follows
from (4−) that g ≈ ii and thus g ≈ hh, which entails by Collapse that g = x.
So g is a mereological atom.

Thus, where (4−) says that every given is a unique sum of givens, i.e. the sum
of itself, (4) says that every mereological object, whether a given or not, is a
unique sum of givens.

Our next aim is to show that the general but impractical formulation of the
extremal clause is equivalent to the simpler formulation based on the hyperex-
tensional principle (4). Before we give a precise description of these theories,
however, we need to describe the intended model of our construction, which
these theories are attempts to describe.

E.3 An intended model of our construction

Suppose we start with a set G of givens to which we apply a summation oper-
ator Σ. We will successively construct mereological sums and identify these in
accordance with the relevant sufficient conditions for identity, which in this case
are the laws C and L.

We start our construction with the givens, which we assume are not sets.
Let D0 = G. At the first round, we construct Σ(gg) for any gg among the
elements of G. To represent these objects, consider D0 ∪℘+(D0), where ℘+(X)
is defined as the set of non-empty subsets of a set X. We now start identifying
objects. We represent these identifications by means of an equivalence relation
∼1 on D0 ∪ ℘+(D0).

The only law that applies at this stage of the construction is C, which tells
us to identify each given g with its own singleton {g}. Thus, we let ∼1 extend
the identity relation by also relating g ∼1 {g} for each given g.

The domain available after the first round of construction, D1, is defined as
the quotient (D0 ∪ ℘+(D0))/∼1. Clearly, we have a natural embedding of D0

into D1, namely, to map x to its own equivalence class.
At the next round, we proceed in a similar way, using D1 and ℘+(D1). That

is, we build up an equivalence relation ∼2 on D1 ∪ ℘+(D1) that represents all
the identifications licensed by C and L.

At this stage the powerful law L is applicable. It tells us that, for any
non-empty X ⊆ D1, we have X ∼2 ∪X, where X ∈ D1. Thus, the L allows
us to identify each element of ℘+(D1) with some element of D1. In this sense,
applying the summation operator a second time produced no new objects: every
object thus produced is identified with an object already in D1. We conclude
that the intended model of our construction of mereological sums, where we
make every identification licensed by C and L, but no further identifications, is
isomorphic to D1, which in turn is isomorphic to ℘+(G).

66

D
RA
FT

E.4 Equivalent formulations of the extremal clause

We want to state precisely the equivalence between our two formulations of the
extremal clause. We are studying pluralities that may be infinite in size and
that contain objects on which we have not yet characterized identity. Then there
are operations on these pluralities and associated sufficient conditions for the
identification of the outputs of the operations. The extremal clause expresses
that no two objects are identical unless they are identified as a result of these
sufficient conditions. We would like a framework that provides a very direct
way of stating extremal clauses. So we adopt one in which terms have the
same infinitary structure as the objects we are studying. Crucially, instead of
a plurality xx, we will use a constant tx for each x ≺ xx, and the conjunction
&tx of all the tx.

We start with first-order logic, which we expand by accommodating the
following items in a simultaneous recursion (where the plural terms and the
singular terms are defined simultaneously):

(a) a term conjunction & that applies to any set of singular terms, possibly
infinite, and yields a plural term (for convenience, we will write &iti for
&{ti : i ∈ I}, where I is some relevant, non-empty index set);

(b) the binary predicate ≺ for plural membership, applying to singular term
and a plural one;

(c) a constructor Σ that applies to any plural term and yields a singular term;

(d) a disjunction
∨

that applies to any set of formulas, possibly infinite, and
yields a formula; intuitively

∨
{ϕn : 0 ≤ n ≤ 5} represents ϕ0 ∨ . . . ∨ ϕ5

(here too we simply the notation by writing
∨
i ϕi for

∨
{ϕi : i ∈ I}, where

I is some relevant, non-empty index set);

(e) a unique canonical constant gα for each given, with α from an appropriate
index set A;

(f) a special predicate G for being a given.

So we have an infinitary expansion of first-order logic whose structure is similar
to that of plural logic. Terms of the form &iti are here the only plural terms.

Within this framework, we characterise the theory Γ that will be the basis
for the two formulations of the extremal clause. We want to be able to carry
out infinitary reasoning with disjunctions, and we define infinitary conjunctions
via versions of De Morgan’s laws. So we assume an infinitary proof system con-
taining axiom schemes and rules of inference supporting the required reasoning
(see, for example, Dickmann 1975, Appendix C).

Plural terms, i.e. terms of the form &iti, are governed by axioms that specify
the members of the denoted pluralities:

∀x(x ≺ &iti ↔
∨
i

x = ti) (5)

67

D
RA
FT

Plural inclusion and plural identity are defined, respectively, as:

&iti 4 &jtj ↔ ∀x(x ≺ &iti → x ≺ &jtj) (6)

&iti ≈ &jtj ↔ &iti 4 &jtj ∧&iti 4 &jtj (7)

Plural terms are governed by Leibniz’s law:

&iti ≈ &jtj → (ϕ(&iti)↔ ϕ(&jtj)) (8)

The status of the givens is captured by the axiom:

∀x(x ≺ &αgα ↔ Gx) (9)

where &αgα abbreviates &{gα : α ∈ A}, the term conjunction of all constants
for givens. We also assume that Γ proves the appropriate distinctness claims
involving givens. So, for every i, j ∈ A with i 6= j, we add the axiom:

gi 6= gj (10)

Note that, as a result, Γ decides coextensionality statements between pluralities
of givens (i.e. statements of the form &βgβ ≈ &δgδ).

Next, the constructor Σ satisfies C:

∀x∀y(x ≺ &iti ∧ y ≺ &iti → x = y)→ ∀x(x ≺ &iti → Σ(&iti) = x) (11)

(In words: if &iti includes a single object, then its sum is identical with that
object.)

Finally, the constructor satisfies L:

∀x(x ≺ &iti → (x ≺ &jtj ∨
∨
K

x = Σ(&ktk))) ∧

∀y(y ≺ &jtj → (y ≺ &iti ∨
∨
K

(y ≺ &ktk ∧ Σ(&ktk) ≺ &iti))) →

Σ(&iti) = Σ(&jtj)

(12)

where K ranges over all non-empty subsets of J , the index set of the tj , and for
each K, k ranges over all elements of K. The two disjunctions that range over K
simulate existential quantification over the supluralities of &jtj . (In words: two
pluralities, one obtained from the other by replacing some pluralities of objects
with their respective sums, yield the same sum.)

We contend that the theory Γ is consistent. This can be proved by construct-
ing a set-theoretic model based on the constants {gα : α ∈ A}, with arbitrary
sums, and where we identify in accordance with C and L. We now observe that
Γ is satisfied in the model described in Section E.3 and is therefore consistent.

We also contend that Γ proves all the identity statements involving two terms
that follow from our sufficient conditions for identification. For, whenever the
antecedent of one of these conditions obtains, then Γ proves that it does, and

68

D
RA
FT

thus it proves the ensuing identity statement. The only hard case is that of
Leveling. Suppose that the antecedent of an instance of Leveling holds. To see
that Γ proves this antecedent, we need only observe that Γ handles the relevant
disjunctions in truth-functional logic. The upshot is that when the antecedent
of L holds, then Γ proves that it holds. This ensures that Γ can utilise the fact
that it contains L to prove the desired identity.

Our next result shows that Γ proves, of every closed singular term, that it
can be rewritten in a certain canonical form, namely, as a sum of givens.

Proposition 1. For every closed singular term t, there is a set {gβ : β ∈ B},
with B ⊆ A, such that Γ ` t = Σ(&βgβ).

Proof. The proof proceeds by induction on the construction of t. There are
just two options: t could be a term gα for a given, or t could be Σ(&iti) for
some terms ti already constructed. Suppose t is a constant for a given, say,
g. Then, by C, we have Γ ` g = Σ(&{g}). Next, suppose that t is Σ(&iti).
By inductive hypothesis, we have that, for every i, Γ ` ti = Σ(&Ci) for some
Ci ⊆ {gα : α ∈ A}. Let C = ∪iCi. We want to show that Γ ` t = Σ(&C),
i.e. Γ ` Σ(&iti) = Σ(&C). Since Γ ` ti = Σ(&Ci) for every i, Γ ` &iti ≈
&iΣ(&Ci). By Leibniz’s law, we thus obtain Γ ` Σ(&iti) = Σ(&iΣ(&Ci)). It
remains only to apply L to simplify the right-hand term of this last identity. To
do so, we observe that it is provable in Γ that &iΣ(&Ci) is obtained from &C by
replacing every subset Ci of C with its sum Σ(&Ci). We can then apply L and
obtain Γ ` Σ(&iΣ(&Ci)) = Σ(&C). By transitivity of identity, we thus obtain
Γ ` Σ(&iti) = Σ(&C), as desired. Since these are the only ways to construct
singular terms, this exhausts all the cases.

We observe that Proposition 1 is a syntactic analogue of the earlier Lemma 1.
Where the proof of the lemma uses plural quantification and the induction
principle IC(S), the proof of the proposition uses infinitary logic and induction
on the construction of terms.

As we have seen, the general but impractical way to state the extremal
clause is to adopt the negation of every identification that doesn’t follow from
the sufficient conditions:

Γ 6= = Γ ∪ {t1 6= t2 : Γ 0 t1 = t2}

Naturally, this expresses that we identify no more than what is required by the
sufficient conditions. Since Γ is consistent, so is Γ6=. This theory is consistent,
as it is satisfied in the model mentioned above.

Recall that the more practical reaxiomatisation of the resulting theory is
based on the hyperextensional principle that if one sum can be constructed
from givens gg and also from givens hh, then gg are the very same objects as
hh. In the present setting, this can be expressed as follows:

&βgβ 4 &αgα ∧ &δgδ 4 &αgα ∧ Σ(&βgβ) = Σ(&δgδ) →
&βgβ ≈ &δgδ

(HEP)

69

D
RA
FT

where β and γ range over subsets of the index set A. We obtain the desired
reaxiomatisation by adding (HEP) to the base theory Γ:

Γ+ = Γ ∪ {(HEP)}

This theory too is satisfied in the model mentioned above. So it is consistent.

Lemma 3. Both Γ6= and Γ+ decide all identity statements flanked by closed
singular terms.

Proof. For Γ6=, the claim is trivial: either Γ proves the identity t1 = t2 or else
its negation is added to Γ 6=. Next, consider Γ+ and the identity t1 = t2. By
Proposition 1, there are constants for givens {gβ : β ∈ B} and {gδ : δ ∈ D}, with
B,D ⊆ A, such that Γ proves t1 = Σ(&βgβ) and t2 = Σ(&δgδ). Furthermore,
Γ+ decides the coextensionality statement &βgβ ≈ &δgδ, since Γ does. There
are two options. Suppose Γ+ proves the coextensionality. Then by Leibniz’s
law, it also proves the identity t1 = t2. Alternatively, if Γ+ disproves the
coextensionality, it also disproves the mentioned identity by (HEP).

We are now ready to prove our claim that Γ6= and Γ+ are equivalent and
thus the hyperextensionality principle does the job. This justifies the use of the
hyperextensionality principle as our necessary condition.

Theorem 1. (a) Γ 6= ` t1 = t2 ⇔ Γ+ ` t1 = t2;

(b) Γ 6= ` t1 6= t2 ⇔ Γ+ ` t1 6= t2.

Proof. (a) Suppose Γ6= ` t1 = t2. Suppose, for contradiction, that Γ does not
prove t1 = t2. Then Γ6= ` t1 6= t2, which contradicts our observation that Γ 6= is
consistent. Hence Γ, and therefore also Γ+, proves t1 = t2, as desired.

Suppose Γ+ ` t1 = t2. By Proposition 1, there are constants for givens
{gβ : β ∈ B} and {gδ : δ ∈ D}, with B,D ⊆ A, such that Γ proves t1 = Σ(&βgβ)
and t2 = Σ(&δgδ). So Γ+ ` Σ(&βgβ) = Σ(&δgδ). Hence, by the hyperexten-
sional principle (HEP), Γ+ ` &αgα ≈ &βgβ . Since Γ decides coextensionality
statements between pluralities of givens, and since Γ+ is consistent, it follows
that Γ ` &βgβ ≈ &δgδ. By Leibniz’s law, Γ ` Σ(&βgβ) = Σ(&δgδ), hence Γ6=

proves this as well, which is what we wanted to show.
Claim (b) follows immediately from (a), given that both theories are consis-

tent and decide closed identity statements (by Lemma 3).

Our equivalence result concerning the two ways of formulating the extremal
clause makes crucial use of an infinitary language. What, one may wonder,
does this tell us about the context of an ordinary finitary language, i.e. a
language without the infinitary resources described above? We have already
observed that the hyperextensionality principle (HEP) is sound with respect to
the intended model. We additionally contend that (HEP) provides a complete
basis for distinguishing mereological sums. Consider any closed singular terms
t1 and t2. Suppose their referents are distinguished in the intended model (and
thus also Γ 6= ` t1 6= t2). Suppose a theory F in a some finitary language includes

70

D
RA
FT

(4), i.e. our earlier finitary statement of the hyperextensionality principle, and
yet fails to prove this distinctness claim. Then this incompleteness does not arise
because (4) is an inadequate basis for distinguishing sums, it arises because of
the weakness of F . That is, F fails to prove either that the two terms in question
can be rewritten in canonical form as sums of givens or that the associated
coextensionality statement involving pluralities of givens is false. In a nutshell,
F “knows” all there is to know about how to distinguish sums but lacks the
information needed to apply this knowledge.

E.5 Further investigations

The above discussion calls for further investigations, which we plan to undertake
in future work. In particular, we would like to:

1. document the reusability of our framework by showing that it is possible
to lift the assumption that Σ is the only constructor that yields mereo-
logical sums. For example, one may use a deconstructor that partitions a
mereological sum into proper parts.

2. extend our account to constructors with other CLAP profiles, for exam-
ple a constructor satisfying Collapse but not Leveling. This combination
would give Quinean sets where every individual is identified with its own
singleton.

3. investigate the use of several constructors side by side, especially in con-
texts where one can identify objects constructed from different construc-
tors. For example, one may identify Quinean sets of cardinality two or
more with the corresponding ordinary sets. This means adopting further
sufficient conditions for identity. Again, one can formulate and examine
appropriate extremal clauses, which allow us to distinguish objects not
identified by the new sufficient conditions.

4. develop a more systematic framework for studying the equivalence of al-
ternative formulations of extremal clauses.

F Proof of consistency of the Core Construc-
tional Theory

We prove consistency by constructing a model for the CCT, in this case a set-
theoretic model. For convenience, we will work in set theory with urelements.
Since our urelements form a set, it is routine to translate this impure set theory
into a corresponding pure set theory. Our metatheory will mostly be ZFC, but
at times it will also be useful to invoke Morse-Kelley set theory, which adds to
ZFC a single layer of classes on top of all the sets.

The model we construct validates the full CCT, including the optional addi-
tional principle (*) to the effect that every successor stage is a maximal extension

71

D
RA
FT

(Section 9.15). In future work, it would be interesting to consider alternative,
or more general, set-theoretic constructions which model other stage-theoretic
axioms and assumptions.

As a basis for the model, we assume two disjoint sorts of urelements:

• A set I of index objects that encode the basic type of the objects that
are modeled: s for set, m for (mereological) individual, l for left object, r
for right object, p for pair, and t for trace. (We do not need to include
an index object for the derived type union.) That is, I = {s,m, l, r,p, t}.
We require that the index objects are not used in any other way in the
set-theoretic model.

• A set G of givens.

We also assume G has the following subset:

• A set W of the six constants indicating types of construction. So W =
{cset, csum, cleft, cright, cpair, cunion}.

Other than the stages, which will be treated separately, we model each ob-
ject as a pair of an index object, which specifies what kind of object is being
represented, and a set, which specifies the particular objects of this kind that is
being represented. In characterizing the set-theoretic model, we adopt the usual
notation for ordered tuples. The notation (a, b) stands for the Kuratowski pair,
i.e. (a, b) =def {{a}, {a, b}}. The notation (a, b, c) stands for ((a, b), c). And so
on for longer tuples.

A remark about the role of the index objects: their function is to avoid
clashes between types, or more precisely, to prevent confusion over which type
of object is represented by a certain set, which would also lead to unclarity
about which object is represented by the set in question. An example: without
the index objects, the set {{a}, {a, b}} might be taken to represent either itself,
i.e. a set of rank 2, or the pair of a and b.

Here is the idea. Consider an object z:

• z represents a set x iff z = (s, x).

• z represents the mereological sum of a set x of givens iff there is an x ⊆
G such that z = (m, x). We say that z represents an individual iff z
represents the mereological sum of a set of givens.

• z represents a left object x iff z = (l, x).

• z represents a right object x iff z = (r, x).

• z represents a pair x iff z = (p, x).

• z represents a trace iff z = (t, x1, x2, x3) and one of the following is the
case:

(i) x3 = cset, x1 represents a set y, and x2 is a member of y;

72

D
RA
FT

(ii) x3 = csum, x1 represents a mereological sum of a set y of givens, and
x2 represents a sum of a subset of y;

(iii) x3 = cleft, x1 represents a left object y, and x2 is a member of y;

(iv) x3 = cright, x1 represents a right object y, and x2 is a member of y;

(v) x1 = cpair, x1 represents a pair y, and x2 is a member of y;

(vi) x1 = cunion, x1 represents a set y, and x2 represents a set y′ ⊆ y.

We now specify the model. We define a construction operation C such that
C(X) will model the result of undertaking all of our forms of construction on
the basis of the objects represented by elements of X. The operation will also
model the introduction of the appropriate traces based on these constructions.
That is, given a set X, we define C(X) as the set whose elements are all and
only the following objects:

• for any x ⊆ X such that every element of x represents a settable object,
(s, x) ∈ C(X) and (t, (s, x), y, cset) ∈ C(X) for every y ∈ x;

• for any x ⊆ X such that every member of x is summable, (m, z) ∈ C(X),
where z is the union of all of the sets that figure as second coordinates of
elements of x, and (t, (m, z), y, csum) ∈ C(X) for every y ∈ x;

• for any singleton x ⊆ X whose element y represents a positionable object,
(l, x) ∈ C(X) and (t, (l, x), y, cleft) ∈ C(X);

• for any singleton x ⊆ X whose element y represents a positionable object,
(r, x) ∈ C(X) and (t, (r, x), y, cright) ∈ C(X);

• for any x ⊆ X with exactly two elements y1 and y2 representing a left
object and a right object, (p, x) ∈ C(X), (t, (p, x), y1, cpair) ∈ C(X), and
(t, (p, x), y2, cpair) ∈ C(X);

• for any x ⊆ X such that every element of x represents a set, (t, (s, z), y, cunion) ∈
C(X) for every y ∈ x, where z is the union of all of the sets that figure as
second coordinates of elements of x.

Let G∗ be {(m, {g}) : g ∈ G}.

By set-theoretic recursion, we now define a sequence Mα such that

• M0 = G∗;

• Mα+1 = Mα ∪ C(Mα);

• Mλ =
⋃
γ<λMγ .

73

D
RA
FT

As usual (see Kunen 1980), we can talk about M as the union of all of the
Mα, exactly as we talk about the set-theoretic universe V as the union of all of
the ranks Vα. In fact, for the purposes of interpreting traditional plural logic, it
is convenient to use as our metatheory Morse-Kelley rather than ZFC. Then M
can be a proper class. Alternatively, if we use ZFC + “there is an inaccessible
cardinal”, M can be a subset of Mκ for κ the first inaccessible.

Lemma 1. When (m, x) ∈M , then x ⊆ G.

Proof. A straightforward induction on the construction of M .

Now, M is almost the model we need. To represent the stages, which do
not emerge from constructions, we add to M appropriate ordinals from our
metatheory. We assume that there is no overlap between M and these ordinals.
Let M∗ be the resulting model. If we use Morse-Kelley, M∗ is proper class: the
union of M and the proper class of all ordinals. If we use ZFC + “there is an
inaccessible cardinal”, M∗ is a set: the union of M and the set of ordinals less
than the first inaccessible.

We interpret the CCT in M∗. Plural variables are interpreted as ranging
over non-empty subclasses of M∗ (if we use Morse-Kelley class theory) or non-
empty subsets of M∗ (if we use ZFC + “there is an inaccessible cardinal”).
Plural membership is interpreted as set- or class-theoretic membership, i.e. ‘≺’
is true of a, b iff a ∈ b. The interpretation of the basic vocabulary of the CCT
is given by the following clauses:

• ‘Construct(z : xx, y)’ is true of a, b, c iff c ∈W and:

– if c = cset, a = (s, b);

– if c = csum, a = (m, d) and d is the union of all of the sets that figure
as second coordinates of elements of b;

– if c = cleft, a = (l, b);

– if c = cright, a = (r, b);

– if c = cpair, a = (p, b);

– if c = cunion, then every element of b represents a set and a = (s, d),
where d is the union of all of the sets that figure as second coordinates
of elements of b.

• ‘Individual’ is true of a iff a = (m, x), for some x.

• ‘HasOutput(w, z)’ is true of a, b iff a = (t, b, x2, x3), for some x2, x3.

• ‘HasInput(w, x)’ is true of a, b iff a = (t, x1, b, x3), for some x1, x3.

• ‘HasType(w, y)’ is true of a, b iff a = (t, x1, x2, b), for some x1, x2.

• ‘Stage’ is true of all and only the ordinals in M∗, where ‘E’ is true of α
and β iff α ≤ β, and ‘x@s’ is true of a and α iff a ∈Mα.

74

D
RA
FT

The language of the CCT also contains six special constants, which have been
included among the givens. So we let these constant interpret themselves. Fi-
nally, the interpretation of the vocabulary introduced by definition is determined
by the interpretation of the defining expression.

Theorem 1. All of the axioms of the CCT are satisfied in this model.

Proof. We sketch the reasoning why the axioms satisfied in the model, proceed-
ing by groups of axioms.

• The axioms of plural logic are satisfied because plural variables are inter-
preted as ranging over non-empty subcollections of M∗. These subcollec-
tions will be either subclasses or subsets, depending on whether we use
MK or ZFC + “there is an inaccessible”. (Notice that to validate com-
prehension axioms that give pluralities not bounded by a stage, we need
to go beyond ZFC. This is the only place where this is needed.)

• The axioms concerning stages are satisfied because these axioms are true
of the canonical ordering (α ≤ β) of the ordinals. Notice that the proofs
that the stage-theoretic axioms of Infinity and Replacement are satisfied
uses the corresponding axioms of set theory.

• The axioms concerning the initial stage are satisfied because M0 has been
chosen so as to be non-empty and to contain the interpretations of the six
special constants.

• The axioms concerning what exists at a stage are satisfied: every non-stage
exists at a stage; the stages are cumulative; limit stages just accumulate
the preceding stages; stages with identical domains are identical; and suc-
cessor stages contain only the domain of the preceding stage, objects that
can be constructed from this domain, and appropriate traces.

• There are two axioms concerning the generic constructor. The definition
of the construction operator C and the interpretation of the predicate
‘Construct’ ensures that objects of the same type, constructed from
the same pluralities, are the same. Moreover, the interpretation has been
constrained so that if an object is constructed from a plurality using a
parameter, the parameter is a type of construction. So both axioms are
satisfied.

• The classification axioms are satisfied by the way in which different types
of objects have been encoded in the model. This encoding represents
different types of constructed objects by means of different indices, except
for unions, which are sets.

• The axioms concerning the set constructor are satisfied. The definition of
the construction operator C implies that every plurality of settable objects
existing at a stage (and no other plurality at that stage) forms a set at
the next. Moreover, since the stages are well-founded, the elements of a

75

D
RA
FT

set exist prior to the set. The extensionality of sets in the metalanguage
secures the extensionality of sets in the object language, which means that
the injectivity axiom is satisfied. The set-theoretic version of the axiom
that there is an infinite stage holds at Mω and is thus satisfied.

• The axioms concerning the sum constructor are satisfied because of the
definition of the construction operator C and of the fact that the sums
are tracked in our model by the unique set of givens from which they are
constructed, which also implies that Collapse and Leveling are satisfied.

• The axioms concerning the left and right constructors are satisfied. The
definition of the construction operator C implies that every singleton of
a positionable object existing at a stage forms a position object at the
next. Since the stages are well-founded, the element of a singleton of a
positionable object exists prior to the resulting position object. Given our
representation of position objects in the model, the extensionality of sets
in the metalanguage secures the extensionality of position objects in the
object language. This means that the injectivity axioms are satisfied.

• The axioms concerning the pair constructor are satisfied. The definition
of the construction operator C implies that every set of exactly one left
object and one right object existing at a stage forms a pair a the next.
Since the stages are well-founded, the position objects exist prior to the
pair. Given our representation of pairs in the model, the extensionality of
sets in the metalanguage secures the extensionality of pairs in the object
language. So the injectivity axiom is satisfied.

• Unlike other constructors, the union constructor is derived. Applications
of this constructor yield sets rather than sui generis objects. The inter-
pretation of the predicate for the generic constructor ensures that, when
the construction type is union, the result is the appropriate set. So the
single axiom concerning this constructor is satisfied.

• The axioms concerning traces are satisfied because the definition of the
construction operator C ensures that all required traces are generated at
the appropriate stages. Together with each constructed object, C adds
traces with the appropriate information about input, output, and type of
the construction.

• Finally, the model has been constructed so as to satisfy the axiom that
every successor stage is maximal. This is because the construction opera-
tion C yields all of our forms of construction from the objects at a given
stage, and it generates all required traces.

76

D
RA
FT

G Axioms

This appendix collects the axioms included in the body of the report, providing
a single point of reference for all the axioms of the CCT. As part of the process
of conforming to [ISO/IEC 21838-1:2021 Information technology — Top-level
ontologies (TLO)] and building the Foundation Data Model, this appendix will
be used (in a subsequent project) as the master input to a computerised transla-
tion into the Common Logic Interchange Format (CLIF) as defined in ISO/IEC
24707:2018 – Annex A. [ISO/IEC 24707:2018 Information technology — Com-
mon Logic (CL) — A framework for a family of logic-based languages]. To
ensure data quality, we are currently developing an automated process to ex-
tract the axioms from the body of the report into this master appendix, and to
convert these axioms into CLIF.

G.1 Primary axioms

(A1) ∀xx∃y y ≺ xx
(Every plurality has at least one member.)

(A2) ∀xx∀yy(∀z(z ≺ xx ↔ z ≺ yy) → (ϕ(xx) ↔ ϕ(yy)))

(Coextensive pluralities satisfy the same formulas.)

(A3) ∃xϕ(x)→ ∃xx∀x(x ≺ xx ↔ ϕ(x))

(If something is ϕ, then there are some things that are all and only the
ϕs. That is, if something is ϕ, then the ϕs exist.)

(D1) xx 4 yy ↔ ∀z(z ≺ xx→ z ≺ yy)

(Some things xx are among yy when everything that is one of xx is one
of yy.)

(D2) xx ≈ yy ↔ (xx 4 yy ∧ yy 4 xx)

(Two pluralities xx and yy are identical if and only if xx are among yy
and yy are among xx, i.e. xx and yy have the same members.)

(A4) ∀s sE s

(E is reflexive.)

(A5) ∀s∀t(sE t ∧ tE s → s = t)

(E is antisymmetric.)

(A6) ∀s0∀s1∀s2(s0 E s1 ∧ s1 E s2 → s0 E s2)

(E is transitive.)

(A7) ∀s∀t(sE t ∨ tE s)

(E is connected.)

77

D
RA
FT

(D3) sC t↔ (sE t ∧ s 6= t)

(A8) ∀ss∃s(s ≺ ss ∧ ¬∃t(t ≺ ss ∧ tC s))

(The stages are well-founded by E. That is, for any plurality ss of stages,
there is a member s that is first among ss with respect to the order E.)

(A9) ∀s∃t sC t

(For every stage, there is a strictly later stage.)

(D4) Succ(s, t)↔ sC t ∧ ¬∃u (sC u ∧ uC t)

(A10) ∃t(∃s sC t ∧ ∀s(sC t→ ∃u(sC u ∧ uC t)))

(There is a stage that is after some stage and is not immediately after
any other stage.)

(D5) xx@@s ↔ ∀x(x ≺ xx→ x@s)

(A11)

xx@@s ∧ ∀x(x ≺ xx→ ∃y(¬Stage(y) ∧ ∀z(ψ(x, z)↔ y = z))) →
∃t∀x(x ≺ xx→ ∀y(ψ(x, y)→ y@t))

(Suppose that xx exist at s and that ψ(x, y) represents a function
mapping objects among xx to objects other than stages. Then there is a
stage t such that what exists at t includes the image under ψ of every
member of xx.)

(D6) Init(s)↔ ¬∃t tC s

(D7) Given(x)↔ ∃s(Init(s) ∧ x@s)

(A12) ∃x Given(x)

(There is some given.)

(A13) Given(cset) ∧ Given(csum) ∧ Given(cleft) ∧ Given(cright) ∧
Given(cpair) ∧ Given(cunion)

(The givens include: cset, csum, cleft cright, cpair, cunion.)

(A14) cset 6= csum ∧ cset 6= cleft ∧ cset 6= cright ∧ cset 6= cpair ∧ cset 6=
cunion ∧ csum 6= cleft ∧ csum 6= cright ∧ csum 6= cpair ∧ csum 6=
cunion ∧ cleft 6= cright ∧ cleft 6= cpair ∧ cleft 6= cunion ∧ cright 6=
cpair ∧ cright 6= cunion ∧ cpair 6= cunion

(D8)
Type(y) ↔ (y = cset ∨ y = csum ∨ y = cleft ∨

y = cright ∨ y = cpair ∨ y = cunion)

78

D
RA
FT

(A15) ∀x(¬Stage(x)→ ∃s x@s)

(Everything that isn’t a stage exists at some stage.)

(A16) ∀x(x@s↔ x@t)→ s = t

(Stages with identical domains are identical.)

(A10) sE t ∧ x@s→ x@t

(When one stage precedes another, then everything that exists at the
former also exists at the latter.)

(D9) LUB(t, ss)↔ ∀s(s ≺ ss→ sE t) ∧ ∀t′(∀s(s ≺ ss→ sE t′)→ tE t′)

(According to the definition, t is the least upper bound of ss if and only
if two conditions are met: (i) t is an upper bound of ss, i.e. t is after, or
equal to, any stage in ss; (ii) t is the least among the upper bounds of ss,
i.e. t is before, or equal to, any upper bound of ss.)

(A17) LUB(t, ss)→ ∀x(x@t→ ∃s(s ≺ ss ∧ x@s))

(Suppose t is the least upper bound of some stages ss. Then everything
that exists at t exists at some of ss.)

(D10) ConstrFrom(x, s)↔ ∃xx∃y(xx@@s∧Type(y)∧Construct(x : xx, y))

(A18) Succ(s, t) ∧ x@t → x@s ∨ConstrFrom(x, s) ∨Trace(x)

(Everything that exists at a successor stage either existed at the
predecessor stage, or is constructed from something at that stage, or is a
trace.)

(D11) Individual(x)↔ (Given(x) ∨ ∃xx Construct(x : xx, csum))

(Any object is an individual if and only if it is either a given or a sum.)

(A19)
Construct(z1 : xx1, y1) ∧ Construct(z2 : xx2, y2) ∧

y1 = y2 ∧ xx1 ≈ xx2 → z1 = z2

(Any two objects of the same type, constructed from the same
pluralities, are the same.)

(A20) Construct(z : xx, y) → Type(y)

(If an object z is constructed from xx using y, then y is a type.)

(D12) Set(x : xx)↔ Construct(x : xx, cset)

(D13) Sum(x : xx)↔ Construct(x : xx, csum)

(D14) Left(x : xx)↔ Construct(x : xx, cleft)

79

D
RA
FT

(D15) Right(x : xx)↔ Construct(x : xx, cright)

(D16) Pair(x : xx)↔ Construct(x : xx, cpair)

(D17) Union(x : xx)↔ Construct(x : xx, cunion)

(D18) IsSet(x)↔ ∃xxSet(x : xx)

(D19) IsSum(x)↔ ∃xxSum(x : xx)

(D20) IsLeft(x)↔ ∃xxLeft(x : xx)

(D21) IsRight(x)↔ ∃xxRight(x : xx)

(D22) IsPair(x)↔ ∃xxPair(x : xx)

(D23) IsUnion(x)↔ ∃xxUnion(x : xx)

(D24)

Injective(y) ↔ Type(y) ∧
∀z1∀xx1∀z2∀xx2(Construct(z1 : xx1, y) ∧ Construct(z2 : xx2, y) →

(z1 = z2 → xx1 ≈ xx2))

(A21)

∀z1∀z2∀xx1∀xx2∀y1∀y2(Construct(z1 : xx1, y1) ∧Construct(z2 : xx2, y2)

∧ y1 6= y2 ∧ y1 6= cunion ∧ y2 6= cunion → z1 6= z2) ∧
∀z(∃xx∃yConstruct(z : xx, y)→ ¬Trace(z) ∧ ¬Stage(z)) ∧
∀z(Trace(z)→ ¬Stage(z))

(Nothing has more than one of the relevant properties. More explicitly,
any two objects constructed from distinct types other than union are
distinct; constructed objects are distinct from traces and stages; and
traces are distinct from stages.)

(D25)

Settable(x) ↔
(IsSet(x) ∨ Individual(x) ∨ IsPair(x) ∨ Trace(x))

(A22) ∀xx∀x(Set(x : xx) → ∀z(z ≺ xx → Settable(z)))

(If some things construct a set, then each of them is settable.)

(A23)
∀xx∀s(xx@@s ∧ ∀x(x ≺ xx → Settable(x)) →

∃xSet(x : xx))

(For every plurality xx of settable objects existing at s, the set of xx
exists.)

80

D
RA
FT

(A24) Injective(cset)

(The type set is injective. That is, a set is constructed from at most one
plurality.)

(D26) x ∈ y ↔ ∃yy(Set(y : yy) ∧ x ≺ yy)

(A25)

∃xx∃s∃y(xx@@s ∧ Given(y) ∧ y ≺ xx ∧ ∀x(x ≺ xx →
∃u∃uu(Set(u : uu) ∧ ∀w(w ≺ uu ↔ w = x) ∧ u ≺ xx)))

(There are some xx such that xx exist at a stage, xx have a given as
member and, whenever x is a member of xx, its singleton {x} is also a
member of xx.)

(D27) Summable(x) ↔ Individual(x)

(A26) ∀xx∀x(Sum(x : xx) → ∀z(z ≺ xx → Summable(z)))

(If some things construct a sum, then each of them is summable.)

(A27) ∀z(z ≺ xx→ Summable(z) ∧ z@s)→ ∃xSum(x : xx)

(For every plurality xx of summable objects existing at a stage s, the
sum of xx exists.)

(A28) Sum(x : xx) ∧ ∀u(u ≺ xx↔ u = y)→ x = y

(The sum constructed from the singleton plurality of x is x.)

(A29)

Sum(x : xx) ∧ Sum(y : yy) ∧
∀z1(z1 ≺ xx → (z1 ≺ yy ∨ ∃zz(zz 4 yy ∧ Sum(z1 : zz)))) ∧
∀z2(z2 ≺ yy → (z2 ≺ xx ∨

∃zz(zz 4 yy ∧ z2 ≺ zz ∧ ∃z3(z3 ≺ xx ∧ Sum(z3 : zz))))) →
x = y

(Suppose x is a sum of xx and y is a sum of yy. If the following two
conditions are satisfied, then x is y:

1. every x among xx is either one of yy or is a sum of some zz among
yy;

2. every y among yy is either one of xx or is one of some members of
yy whose sum is among xx.

In other words, two pluralities, one obtained from the other by replacing
some pluralities of objects with their respective sums, yield the same
sum.)

81

D
RA
FT

(A30)

∀x1(x1 ≺ xx1 → Given(x1)) ∧ ∀x2(x2 ≺ xx2 → Given(x2)) ∧
Sum(z2 : xx1) ∧ Sum(z2 : xx2)→

(z1 = z2 → xx1 ≈ xx2)

(If two sums of givens are identical, those givens must also be identical.
That is, a sum can be constructed from givens xx1 and also from givens
xx2, then xx1 are the very same objects as xx2.)

(D28) x ≤ y ↔ ∃yy(Sum(y : yy) ∧ x ≺ yy)

(D29) Atom(x) ↔ IsSum(x) ∧ ∀y(y ≤ x → y = x)

(A31)
∀xx∀x((Left(x : xx) ∨ Right(x : xx)) →

∀y∀z(y ≺ xx ∧ z ≺ xx → y = z))

(Any input plurality to the left or right constructor has no more than
one member.)

(D30)

Positionable(x) ↔
(IsSet(x) ∨ Individual(x) ∨ IsPair(x) ∨ Trace(x))

(A32)
∀xx∀x((Left(x : xx) ∨ Right(x : xx)) →

∀z(z ≺ xx → Positionable(z)))

(If some things construct a left or right object, then each of them is
positionable.)

(A33)
∀xx(∀y∀z(y ≺ xx ∧ z ≺ xx → y = z) ∧

∀z(z ≺ xx→ Positionable(z))→
∃x1Left(x1 : xx) ∧ ∃x2Right(x2 : xx))

(If xx is singleton plurality whose member is positionable, then a left
object and a right object with input xx exist.)

(A34) Injective(cleft) ∧ Injective(cright)

(Position types are injective. That is, a position object, left or right, is
constructed from at most one plurality.)

82

D
RA
FT

(A35)
∀xx∀x(Pair(x : xx) →
∃y∃z(y ≺ xx ∧ IsLeft(y) ∧ z ≺ xx ∧ IsRight(z) ∧
∀w(w ≺ xx → (w = y ∨ y = z))))

(Any input plurality to the pair constructor has exactly two members: a
left object and a right object.)

(A36)
IsLeft(x) ∧ IsRight(y)→

∃zz(∀z(z ≺ zz ↔ (z = x ∨ z = y)) ∧
∃zPair(z : zz))

(For every left object x and right object y, a pair with input x and y
exists.)

(A37) Injective(cpair)

(The type pair is injective. That is, a pair is constructed from at most
one plurality.)

(D31)

Unionise(xx, yy) ↔
∀y(y ≺ yy → IsSet(y)) ∧
∀x(x ≺ xx↔ ∃y(y ≺ yy ∧ ∃zz(x ≺ zz ∧ Set(y : zz))))

(A38) Union(z : xx) ↔ ∃yy (Set(z : yy) ∧ Unionise(yy, xx))

(z is the union of xx if and only if z is the set of some yy that “unionise”
xx.)

(A39)
∀w((∃zHasOutput(w, z) ↔ ∃xHasInput(w, x)) ∧

(∃zHasOutput(w, z) ↔ ∃yHasType(w, y)))

(Any object has an output if and only if it has an input if and only if it
has a type.)

(D32) Trace(w) ↔ ∃zHasOutput(w, z)

(A40)

Trace(w1) ∧ Trace(w2) →
∀x1∀x2∀y1∀y2∀z1∀z2((HasOutput(w1, z1) ∧ HasOutput(w2, z2) ∧

HasInput(w1, x1) ∧ HasInput(w2, x2) ∧
HasType(w1, y1) ∧ HasType(w2, y2)) →

(z1 = z2 ∧ x1 = x2 ∧ y1 = y2 ↔ w1 = w2))

83

D
RA
FT

(Two traces are identical if and only if they have the same output, input,
and type.)

(A41)

(Construct(z : xx, y) ∧ z@t ∧ ∃s(sC t ∧ xx@@s))→
∀x(x ≺ xx → ∃w

(
w@t ∧

HasOutput(w, z) ∧ HasInput(w, x) ∧ HasType(w, y)))

(Suppose z is constructed from xx with type y, z exists at t, and xx
exist at some stage before t. Then we also require at t the existence of
appropriate traces. That is, for every member x of xx, there is at t a
trace recording that the construction process has output z, input x, and
type y.)

(A42)

Trace(w) ∧ w@t→
∃z∃xx∃x∃y∃s(Construct(z : xx, y) ∧ z@t ∧ xx@@s ∧ sC t ∧
x ≺ xx ∧HasOutput(w, z) ∧HasInput(w, x) ∧ HasType(w, y))

(If a trace w exists at a stage t, then it must appropriately record some
type of construction of an object existing at t from an input existing at
some stage before t.)

(D33) Max(s, t) ↔ ∀x(ConstrFrom(x, s)→ x@t)

(A43) ∀s∃tMax(s, t)

(Every stage has a maximal extension.)

G.2 Optional axioms

Succ(s, t)→Max(s, t) (*)

H Future work

This project has achieved what it set out to do, that is, to establish that the
formalisation of a unified constructional approach is feasible and consistent. As
planned, we made several compromises to reach this goal as quickly as possible.
We suggest that the next stage is to address these compromises as appropriate.
Also, as often happens when one opens up a new area, further opportunities for
improvement have been created. We have noted a few of these in the body of
the report. Here we give a broad overview of the main ones we have identified
so far. We distinguish between further short-term work that is essential to get
the theory up to scratch and longer-term work that would merely improve or
generalise.

84

D
RA
FT

H.1 Short term

Essential work needed in the short term includes the following tasks:

• set up an automated strategy to check, as far as possible, the consistency
of the axioms inside CLIF;

• integrate the CCT with an existing formalisation of key aspects of the
CCO in CLIF;

• investigate and implement a better solution for the representation of rela-
tions in the CCO and in the CCT. This should extend the notion of pair
to tuples in general.

H.2 Long term

In the long term, we would aim to:

• assess the benefits of using a single constructor to mimic the two kinds of
construction found in Lewis 1991;

• expand our constructional ontology to include deconstructors (e.g. one
that decomposes a mereological objects into its proper parts);

• develop further our approach to constructing via CLAP profile as indicated
in Appendix E.5;

• investigate more systematically the constructional possibilities in the CLAP
classification;

• extend our approach to mereology, which is based on laws of identifica-
tion and extremal clause, to other constructors, thus providing a general
approach;

• examine different ways to effect “cross-identifications”, i.e. identifications
between outputs of different constructors;

• explore alternative formalisations of the constructional approach, such as
dynamic formalisations and formalisations that eliminate stages in favour
of their associated pluralities (for example, using critical plural logic as
developed in Florio and Linnebo 2021, Chapter 12).

I Literature sources

I.1 Current situation with foundations

Set theory (e.g. Zermelo-Fraenkel set theory with the Axiom of Choice) and
mereology (e.g. Classical Extensional Mereology, also known as General Exten-
sional Mereology) are developed as separate axiomatic theories:

85

D
RA
FT

• Enderton 1977, Elements of Set Theory

• Simons 1987, Parts: A Study in Ontology

• Casati and Varzi 1999, Parts and Places: The Structures of Spatial Rep-
resentation

• Varzi 2019, “Mereology”

• Cotnoir and Varzi 2021, Mereology

While these theories are usually developed within the same logical formal-
ism (first-order logic), they are not part of a unified framework. In fact, their
interaction raises a number of logical and philosophical issues:

• Lewis 1991, Parts of Classes

• Uzquiano 2006, “The Price of Universality”

• Florio and Linnebo 2021, The Many and the One: A Philosophical Study
of Plural Logic

Ordered tuples are usually identified as set-theoretic constructions (see En-
derton 1977, pp. 35–41), though they are occasionally developed as sui generis,
e.g. in

• Bourbaki 1954, Section 2.1, Théorie des ensambles. Éléments de Mathématique.
Première partie, Livre I, Chapitres I, II. (See also discussion in Kanamori
2003.)

• Tennant 2007, “Natural Logicism via the Logic of Orderly Pairing”

See also Pleitz 2017, Partridge, Cesare, et al. 2017, Partridge, Mitchell, Lonera-
gan, et al. 2019, and Partridge, Mitchell, Loneragan, et al. manuscript referenced
below.

I.2 History of constructional ontology

Many views in the history of philosophy have a constructional flavour or are out-
right examples of constructional approaches to ontology. Particularly relevant
to our project are:

• Carnap 1928, Der logische Aufbau der Welt (first edition published in
1928)

• Goodman and Quine 1947, “Steps Toward a Constructive Nominalism”

• Goodman 1956, “A World of Individuals”

• Goodman 1958, “On Relations that Generate”

86

D
RA
FT

I.3 Current work on constructional ontology

New ideas by Kit Fine have given a fresh impetus to constructional ontology:

• Fine 1991, “The Study of Ontology”

• Fine 2002, The Limits of Abstraction

• Fine 2005, “Our Knowledge of Mathematical Objects”

• Fine 2010, “Towards a Theory of Part”

Fine’s ideas have inspired recent work that is central to our project:

• De Cesare and Partridge 2016, “BORO as a Foundation to Enterprise
Ontology”

• Partridge, Cesare, et al. 2017, “Developing an Ontological Sandbox: In-
vestigating Multi-level Modelling’s Possible Metaphysical Structures”

• Partridge, Mitchell, Loneragan, et al. 2019, “Coordinate Systems: Level
Ascending Ontological Options”

• Partridge, Mitchell, Loneragan, et al. manuscript, “The Fantastic Com-
binations and Permutations of Co-ordinate Systems’ Characterising Op-
tions: The Game of Constructional Ontology”

• Pleitz 2017, “Two Accounts of Pairs”

Our project provides a formal foundation for the constructional approach.

I.4 Other background work

The project draws on ideas in logic, philosophy of mathematics, and metaphysics
developed in:

• Boolos 1971, “The Iterative Conception of Set”

• Boolos 1989, “Iteration Again”

• Florio and Nicolas 2015, “Plural Logic and Sensitivity to Order”

• Florio and Nicolas 2021, “Plurals and Mereology”

• Linnebo 2018, Thin Objects: An Abstractionist Account

• Linnebo 2013, “The Potential Hierarchy of Sets”

• Schaffer 2010, “Monism: The Priority of the Whole”

• Studd 2013, “The Iterative Conception of Set: A (Bi-)Modal Axiomatisa-
tion”

87

D
RA
FT

References

Bolton, Alexandra et al. (2018). The Gemini Principles. Tech. rep. Centre for
Digital Built Britain.

Boolos, George (1971). “The Iterative Conception of Set”. In: Journal of Phi-
losophy 68.8, pp. 215–231.

— (1989). “Iteration Again”. In: Philosophical Topics 17.2, pp. 5–21.
Bourbaki, N. (1954). Théorie des ensambles. Éléments de Mathématique. Première

partie, Livre I, Chapitres I, II. Hermann.
Burgess, Gemma et al. (2020). Flourishing Systems - Re-envisioning infrastruc-

ture as a platform for human flourishing. Tech. rep. Centre for Digital Built
Britain.

Carnap, Rudolf (1928). Der logische Aufbau der Welt. Weltkreis. Second edition:
Meiner, 1961. Translated as The Logical Structure of the World by Rolf A.
George. University of California Press, 1967.

Casati, Roberto and Achille Varzi (1999). Parts and Places: The Structures of
Spatial Representation. MIT Press.

Chang, C. C. and H. Jerome Keisler (1990). Model Theory. North Holland.
Cotnoir, A. J. and Achille Varzi (2019). “Natural Axioms for Classical Mereol-

ogy”. In: Review of Symbolic Logic 12.1, pp. 201–209.
— (2021). Mereology. Oxford University Press.
De Cesare, Sergio and Chris Partridge (2016). “BORO as a Foundation to En-

terprise Ontology”. In: Journal of Information Systems 30.2, pp. 83–112.
Dickmann, M. A. (1975). Large Infinitary Languages: Model Theory. North-

Holland.
Enderton, Hebert B. (1977). Elements of Set Theory. Academic Press.
— (2001). A Mathematical Introduction to Logic. Academic Press.
Fine, Kit (1991). “The Study of Ontology”. In: Noûs 25.3, pp. 263–294.
— (1999). “Things and Their Parts”. In: Midwest Studies in Philosophy 23.1,

pp. 61–74.
— (2002). The Limits of Abstraction. Clarendon Press.
— (2005). “Our Knowledge of Mathematical Objects”. In: Oxford Studies in

Epistemology 1, pp. 89–110.
— (2010). “Towards a Theory of Part”. In: Journal of Philosophy 107.11, pp. 559–

589.
Florio, Salvatore and Øystein Linnebo (2018). “Logic and Plurals”. In: The

Routledge Handbook of Collective Intentionality. Ed. by Marija Jankovic and
Kirk Ludwig. Routledge, pp. 451–463.

— (2021). The Many and the One: A Philosophical Study of Plural Logic. Ox-
ford University Press.

Florio, Salvatore and David Nicolas (2015). “Plural Logic and Sensitivity to
Order”. In: Australasian Journal of Philosophy 93.3, pp. 444–464.

— (2021). “Plurals and Mereology”. In: Journal of Philosophical Logic 50.3,
pp. 415–445.

88

D
RA
FT

Gödel, Kurt (1964). “What is Cantor’s Continuum Problem?” In: Collected
Works: Volume II: Publications 1938-1974. Ed. by Solomon Feferman et al.
Oxford University Press, 1990, pp. 176–188.

Goodman, Nelson (1956). “A World of Individuals”. In: The Problem of Uni-
versals: A Symposium. Ed. by I. M. Bochenski, Alonzo Church, and Nelson
Goodman. University of Notre Dame Press, pp. 13–31.

— (1958). “On Relations that Generate”. In: Philosophical Studies 9.5/6, pp. 65–
66.

Goodman, Nelson and W. V. Quine (1947). “Steps Toward a Constructive Nom-
inalism”. In: Journal of Symbolic Logic 12.4, pp. 105–122.

Hetherington, James and Matthew West (2020). The pathway towards an Infor-
mation Management Framework - A ‘Commons’ for Digital Built Britain.
Tech. rep. Centre for Digital Built Britain.

Hodges, Wilfrid (1977). Logic: An Introduction to Elementary Logic. Penguin
Books.

Kanamori, Akihiro (2003). “The Empty Set, the Singleton, and the Ordered
Pair”. In: Bulletin of Symbolic Logic 9.3, pp. 273–298.

Kunen, Kenneth (1980). Set Theory: An Introduction to Independence Proofs.
North-Holland.

Lewis, David (1991). Parts of Classes. Basil Blackwell.
Linnebo, Øystein (2013). “The Potential Hierarchy of Sets”. In: Review of Sym-

bolic Logic 6.2, pp. 205–228.
— (2018). Thin Objects: An Abstractionist Account. Oxford University Press.
NIC (2017). Data for the Public Good. Tech. rep. National Infrastructure Com-

mission.
Partridge, Chris, Sergio de Cesare, et al. (2017). “Developing an Ontological

Sandbox: Investigating Multi-level Modelling’s Possible Metaphysical Struc-
tures”. In: Proceedings of MODELS 2017 Satellite Event co-located with
ACM/IEEE 20th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2017), Austin, TX, USA, September, 17,
2017. Ed. by Loli Burgueñoet al. Vol. 2019. CEUR Workshop Proceedings.
CEUR-WS.org, pp. 226–234.

Partridge, Chris, Andrew Mitchell, Al Cook, et al. (2020). A Survey of Top-
Level Ontologies - To inform the ontological choices for a Foundation Data
Model. Tech. rep. Centre for Digital Built Britain.

Partridge, Chris, Andrew Mitchell, Michael Loneragan, et al. (2019). “Coordi-
nate Systems: Level Ascending Ontological Options”. In: 2019 ACM/IEEE
22nd International Conference on Model Driven Engineering Languages and
Systems Companion (MODELS-C). IEEE, pp. 78–87.

— (manuscript). “The Fantastic Combinations and Permutations of Co-ordinate
Systems’ Characterising Options: The Game of Constructional Ontology”.

Pleitz, Martin (2017). “Two Accounts of Pairs”. In: The Logica Yearbook 2016.
Ed. by Pavel Arazim and Tomáš Lávička. College Publications, pp. 201–221.

Schaffer, J. (2010). “Monism: The Priority of the Whole”. In: Philosophical
Review 119.1, pp. 31–76.

89

D
RA
FT

Schaffer, J. (2015). “What Not to Multiply Without Necessity”. In: Australasian
Journal of Philosophy 93.4, pp. 644–664.

Simons, Peter (1987). Parts: A Study in Ontology. Clarendon Press.
Studd, J. (2013). “The Iterative Conception of Set: A (Bi-)Modal Axiomatisa-

tion”. In: Journal of Philosophical Logic 42.5, pp. 1–29.
Tennant, Neil (2007). “Natural Logicism via the Logic of Orderly Pairing”. In:

Logicism, Intuitionism, Formalism: What has become of them? Ed. by Sten
Lindström et al. Springer Verlag, pp. 91–125.

Uzquiano, G. (2006). “The Price of Universality”. In: Philosophical Studies 129,
pp. 137–169.

Varzi, Achille (2019). “Mereology”. In: The Stanford Encyclopedia of Philos-
ophy. Ed. by Edward N. Zalta. Spring 2019. https://plato.stanford.
edu/archives/spr2019/entries/mereology/. Metaphysics Research Lab,
Stanford University.

West, Matthew (2020). The Approach to Develop the Foundation Data Model
for the Information Management Framework. Tech. rep. Centre for Digital
Built Britain.

— (forthcoming). Managing Shared Data. Tech. rep. Centre for the Protection
of National Infrastructure.

90

https://plato.stanford.edu/archives/spr2019/entries/mereology/
https://plato.stanford.edu/archives/spr2019/entries/mereology/

D
RA
FT

Acknowledgments

Lead Authors: Contributors:

Salvatore Florio Stefano Borgo

Øystein Linnebo Al Cook

Kit Fine

Authors: Pierre Grenon

Chris Partridge Anne Guinard

Martin Pleitz Graham Leach-Krouse

Liam McGee

Andrew Mitchell

Matthew West

91

	Executive summary
	Introduction
	Background
	Purpose
	Target Audience

	Context
	Report overview
	Project background
	Constructional ontology
	Core Constructional Ontology
	Developing the Core Constructional Theory
	Technical background
	Core Constructional Theory: the formal language
	Logical framework
	Non-logical vocabulary
	Conventions

	Core Constructional Theory: the axioms
	Plural logic
	Stages
	Initial stage
	What exists at stages
	What is and is not constructible
	Generic constructor
	Specialised constructors
	Classification
	Set constructor
	Sum constructor
	Left and right constructors
	Pair constructor
	Union constructor
	Traces
	Maximal extension of a stage
	Induction on the construction of objects

	Derivation of set theory and mereology
	Axioms of set theory
	Derivation of the axioms of set theory
	Axioms of mereology
	Derivation of the axioms of mereology

	Consistency of the Core Constructional Theory
	Conclusion
	Notions
	List of key types and identity criteria
	Constraints on inputs

	Design choices
	Supporting the IMF's selected TLOs
	CLAP background
	Constructing via CLAP profiles
	Induction on the construction of Ks
	From sufficient to necessary conditions for identity
	An intended model of our construction
	Equivalent formulations of the extremal clause
	Further investigations

	Proof of consistency of the Core Constructional Theory
	Axioms
	Primary axioms
	Optional axioms

	Future work
	Short term
	Long term

	Literature sources
	Current situation with foundations
	History of constructional ontology
	Current work on constructional ontology
	Other background work

	References
	Acknowledgments

